Ta có:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(f\left(x\right)=\left(x^{99}+x^{88}+x^{77}+...+x^{11}\right)+1\)
\(f\left(x\right)=\left[\left(x^9\right)^{11}+\left(x^8\right)^{11}+\left(x^7\right)^{11}+...+x^{11}\right]+1\)
Ta thấy:
\(\left(x^9\right)^{11}\) chia hết cho \(x^9\)
\(\left(x^8\right)^{11}\) chia hết cho \(x^8\)
\(..........\)
\(x^{11}\) chia hết cho \(x\)
\(1\) chia hết cho \(1\)
\(\Rightarrow f\left(x\right)\) chia hết cho \(g\left(x\right)\) ( Đpcm )