Cho tam giác ABC như Hình 122. Vẽ đường trung trực d của đoạn thẳng BC.
Cho tam giác ABC cân tại A có d là đường trung trực AB vẽ phân giác AE của góc BAC ( E thuộc BC ) d cắt AE tại O a, AE là đường trung trực của tam giác ABC b, O thuộc đường trung trực của đoạn thẳng AC c, O cách đều 3 đỉnh của tam giác ABC
a: ΔABC cân tại A
mà AE là phân giác
nên AE là trung trực của BC
b: O nằm trên trung trực của AB
=>OA=OB
O nằm trên trung trực của BC
=>OB=OC
=>OA=OC
=>O nằm trên trung trực của AC
c: OA=OB=OC
=>O cách đều 3 đỉnh của ΔABC
Cho tam giác ABC có AB < AC, gọi d là đường trung trực của BC. Vẽ K đối xứng với A qua d.
a) Tìm đoạn thẳng đối xứng với đoạn thẳng AB qua đường thẳng d; tìm đoạn thẳng đối xứng với đoạn thẳng AC qua đường thẳng d.
b) Tứ giác AKCB là hình gì?
a) Đoạn thẳng đối xứng với AB, AC qua đường thẳng d lần lượt là KC, KB.
b) ta có AK//BC (vì cùng vuông góc với d) và AC = KB (tính chất đối xứng trục) Þ tứ giác AKCB là hình thang cân
cho tam giác abc có góc a=90 độ, có ac=9cm, bc=24cm. vẽ đường thẳng d là đường trung trực của đoạn thẳng bc. đường thẳng d cắt tia CA tại d
Cho tam giác ABC có AB=6cm,AC-8cm,BC=10cm.Gọi k là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M.Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng
a)Tam giác ABC vuông tại A
b)AB=DC
c)ba đường thẳng AB,MK,CD cùng đi qua một điểm
a) Ta có \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
\(\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại \(A\)
b) Xét \(\Delta BMK\) và \(\Delta CMK\) có:
\(\widehat{BKM}=\widehat{CKM}=90^0\) (gt)
\(BK=CK\) (gt)
\(KM\) chung
\(\Rightarrow\Delta BKM=\Delta CKM\) (c.g.c) \(\Rightarrow BM=CM\)
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(\widehat{A}=\widehat{D}=90^0\)
\(MB=MC\) (đã chứng minh)
\(\widehat{AMB}=\widehat{DMC}\) (hai góc đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta DCM\) (ch-gn) \(\Rightarrow AB=DC\) (hai cạnh tương ứng)
c) Gọi \(AB\cap CD=I\)
Tam giác \(IBC\) có \(\left\{{}\begin{matrix}CA\perp BI\\BD\perp CI\\CA\cap BD=M\end{matrix}\right.\Rightarrow M\) là trực tâm tam giác \(BCI\)
\(\Rightarrow IM\perp BC\) mà \(KM\perp BC\Rightarrow I\in KM\)
Vậy \(AB,CD,KM\) đồng quy tại \(I\)
a) Vẽ tam giác ABC có góc A là góc tù. Vẽ đường trung trực của các cạnh AB,BC,AC
b) Cho tam giác ABC có góc A=90 độ, có AC=9cm,BC=24cm. Vẽ đường thẳng d là đường trung trực của đoạn thẳng BC cắt tia CA
GIÚP MÌNH VỚI NHA
MN GIÚP MIK VỚI :
cho tam giác ABC có AB=6cm,AC=8cm,BC=10cm.Gọi K là trung điểm của đoạn thẳng BC, đường trung trực của đoạn thẳng BC cắt cạnh AC tại M .Gọi D là hình chiếu vuông góc của C trên đường thẳng BM. CMR:
a,Tam giác ABC vuông tạ A
b, AB=DC
Cậu tự vẽ hình
a. Xét tg ABC có:
BC2= 102=100
AB2 + AC2= 62 + 82 = 36 + 64 = 100
=> BC2=AB2 + AC2
=> Tam giác ABC vuông tại A (định lý Py-ta-go đảo)
b. Xét △BKM và △CKD vuông tại K có:
MK chung
BK=KC (K là trung điểm BC)
=> △BKM = △CKD (2cgv)
=> BM=CM (2 cạnh tương ứng)
Xét △DMC vuông tại D và △AMB vuông tại A có:
MB=CM (cmt)
góc BMC chung
=> △DMC = △AMB (ch-gn)
=> AB=DC (2 cạnh tương ứng)
Bài 1: cho tam ABC vuông tại A,trên cạnh BC lấy điểm D sao cho BD=BA. Qua D vẽ đường vuông góc với BC cắt AC tại E,cắt tại F.
a) CM:tam giác ABE= tam giác DBE
b)CM: BE là đường trung trực của đoạn thẳng AD
c) gọi H là trung điểm của đoạn thẳng CF.CM B,E,F thẳng hàng
( vẽ giúp k hình lun nha)
cho tam giác abc có ab<ac gọi d là đường trung trực của bc vẽ k đối xứng với a qua d
a, tìm đoạn thẳng đối xứng với đoạn thẳng ab qua đường d tìm đọa thẳng đối xứng với đoạn thẳng ac qua đường thẳng d
b, tứ giác akcb là hình j
Cho tam giác ABC có AB bằng AC . Kẻ tia phân giác của góc A cắt cạnh BC tại I. Chứng minh:
a) tam giác AIB = tam giác AIC ?
b) AI là đường trung trực của đoạn thẳng BC?
vẽ hình nữa nhé
a: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔABI=ΔACI