cho đa thức p(x)=ax2+bx+c biết p(x) chia hết cho 5 với mọi x c/m a,b,c chia hết cho 5
Bài 6: (0,5 điểm)
Cho đa thức P(x) = ax2 + bx + c trong đó các hệ số a, b, c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c đều chia hết cho 5.
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
a) Cho P(x) = ax2 + bx + c (a, b, c nguyên). Biết rằng P(x) chia hết cho 3 với mọi giá trị nguyên của x. CMR: a, b, c đều chia hết cho 3.
a) Cho Q(x) = ax3 + bx2 + cx + d (a, b, c, d nguyên). Biết rằng Q(x) chia hết cho 5 với mọi giá trị nguyên của x. CMR: a, b, c, d đều chia hết cho 5.
(Giup mình với, mai mình phải nộp)
Cho đa thức P(x)=ax2 + bx +c với a,b,c là các hệ số nguyên. Biết rằng P(x) chia hết cho 5 với mọi x.CMR a,b,c cũng chia hết cho 5
Nếu x=0 thì ta có: P(0)=a.0^2+b.0+c
=0+0+c=c
Vì P(x) chia hết cho 5 với mọi x nên c chia hết cho 5.
Nếu x=1 thì ta có:P(1)=a.1^2+b.1+c
=a.1+b+c
=a+b+c
vì c chia hết cho 5 => (a+b) chia hết cho 5
Nếu x=-1 thì ta có:P(-1)=a.(-1)^2+b.(-1)+c
=a.1+(-b)+c
=a-b+c
vì c chia hết cho 5 => (a-b) chia hết cho 5
Ta có: P(1)+P(-1)=a+b+a-b=2a
Vì P(1) + P(-1) chia hết cho 5 mà (2;5)=1 => a chia hết cho 5
Ta có:P(1)-P(-1)=a+b-a-b=2b
Vì P(1)-(P-1) chia hết cho 5 mà (2;5)=1=> b chia hết cho 5
Vậy a,b,c chia hết cho 5(ĐPCM)
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Cho đa thức P(x)=ax2+bx+c với a,b,c là các số nguyên . Biết rằng P(x) chia hết cho 5 với mọi số nguyên x . Chứng tỏ rằng a,b,c cũng chia hết cho 5
\(P(x)=ax^2+bx+c \) với a,b,c \(\in{Z}\)
Có : \(P(x)\vdots5\forall{x}\in{Z}\)
nên \(P(0)\vdots5\Leftrightarrow a0^2+b0+c\vdots5\)
\(\Leftrightarrow c\vdots5\)
Vì \(P(x)\vdots5\forall x\) nên \(P(1)=a1^2+b1+c \vdots5\Leftrightarrow a+b+c\vdots 5\Rightarrow a+b\vdots 5\) vì \(c\vdots5\)
\(P{-1}=a(-1)^2+b(-1)+c\vdots5\Leftrightarrow a-b+c\vdots5\Rightarrow a-b\vdots 5\) vì \(c\vdots5\)
\(\begin{cases} (a+b)+(a-b) \vdots5\\ (a+b)-(a-b)\vdots5 \end{cases} \) <=> \(\begin{cases} a+b+a-b \vdots 5 \\ a+b-a+b\vdots 5 \end{cases}\) <=> \(\begin{cases} 2a\vdots 5 \\ 2b \vdots 5 \end{cases}\)
=> \(\begin{cases} a \vdots 5 \\ b \vdots 5 \end{cases}\) ( vì (2,5) đều là số nguyên tố )
Vậy \(a\vdots 5 ; b\vdots 5; c\vdots 5\)
cho đa thức p(x)=ax^3+bx^2+cx+d,với a b c d là các số nguyên.Biết p(x)chia hết cho 5 với mọi x nguyên. CMR:a b c d đều chia hết cho 5
Cho đa thức P(x) = ax3 + bx2 + cx + d có các hệ số a, b, c, d nguyên.
Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5
Ta có:
\(P\left(0\right)=d\)
=> d chia hết cho 5
\(P\left(1\right)=a+b+c+d\)
=> a + b + c chia hết cho 5 (1)
\(P\left(-1\right)=-a+b-c+d\) chia hết cho 5 (2)
Cộng (1) và (2) ta được:
2b + 2d chia hết cho 5
Mà d chia hết cho 5 => 2d chia hết cho 5
=> 2b chia hết cho 5
=> b chia hết cho 5
\(P\left(2\right)=8a+4b+2c+d\) chia hết cho 5
=> 8a + 2c chia hết cho 5 ( Vì 4b + d chia hết cho 5 )
=> 6a + 2a + 2c chia hết cho 5
=> 6a + 2( a + c ) chia hết cho 5
=> 2( a + c ) chia hết cho 5 ( Vì a + b + c chia hết cho 5, b chia hết cho 5 )
=> 6a chia hết cho 5
=> a chia hết cho 5
=> c chia hết cho 5
Vậy a ; b ; c ; d chia hết cho 5
Cho đa thức P(x) = ax3 +bx2 + cx + d có các hệ số a,b,c,d nguyên.
Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ