So sánh hai tỉ số \(\frac{{12}}{{28}}\) và \(\frac{{7,5}}{{17,5}}\)
so sánh hai tỉ số 15/21 và 12,5/17,5
ta có
\(\frac{15}{21}=\frac{3.5}{3.7}=\frac{5}{7}\)
còn \(\frac{12.5}{17.5}=\frac{25}{35}=\frac{5.5}{5.7}=\frac{5}{7}\)
Vậy \(\frac{15}{21}=\frac{12.5}{17.5}\)
cho tỉ lệ thức \(\frac{7,5}{4}=\frac{22,5}{12}\)điền đúng hay sai
a) các số 7,5 và 12 là các ngoại tỉ
b) các số 7 và 7,5 là các trung tỉ
c) các số 4 và 22,5 là các trung tỉ
d) các số 22,5 và 12 là các trung tỉ
e) các số 7,5 và 22,5 là các ngoại tỉ
Định Mệnh con Vũ Thùy Linh dell bt thì thôi đừng có coppy bài của người ta
từ tỉ lệ thức \(\frac{12}{18}=\frac{24}{36}=\frac{72}{108}\)tính các tỉ số sau và so sánh chúng với các tỉ số \(\frac{12}{18}\)và \(\frac{36}{54}\)
tất cả các tỉ số bạn nêu đều bằng 2/3
So sánh từng cặp tỉ số trong ba tỉ số sau: \(\frac{4}{6};\frac{8}{{12}};\frac{{ - 10}}{{ - 15}}\)
Vì 4.12 = 6.8 nên \(\frac{4}{6} = \frac{8}{{12}}\)
Vì 8.(-15) = 12. (-10) nên \(\frac{8}{{12}} = \frac{{ - 10}}{{ - 15}}\)
Vì 4.(-15) = 6.(-10) nên \(\frac{4}{6} = \frac{{ - 10}}{{ - 15}}\)
a) Cho tỉ lệ thức \(\frac{6}{{10}} = \frac{{ - 9}}{{ - 15}}\). So sánh tích hai số hạng 6 và -15 với tích hai số hạng 10 và -9
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Nhân hai vế của tỉ lệ thức với tích bd, ta được đẳng thức nào?
a) Ta có: 6. (-15) = -90;
10.(-9) = = - 90
Vậy tích hai số hạng 6 và -15 bằng tích hai số hạng 10 và -9
b) Nhân hai vế của tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với tích bd, ta được: \(\frac{{a.b.d}}{b} = \frac{{c.b.d}}{d} \Rightarrow ad = bc\)
Vậy ta được đẳng thức ad = bc
a) 6.(-15) = 10.(-9) = -90
b) a/b . bd = ad
c/d . bd = bc
Ta được ad = bc
Cho các số hữu tỉ: \(\frac{{ - 7}}{{12}};\,\frac{4}{5};\,5,12;\, - 3;\,\frac{0}{{ - 3}};\, - 3,75.\)
a) So sánh \(\frac{{ - 7}}{{12}}\) với \( - 3,75\); \(\frac{0}{{ - 3}}\) với \(\frac{4}{5}\).
b) Trong các số hữu tỉ đã cho, số nào là số hữu tỉ dương, số nào là số hữu tỉ âm, số nào không là số hữu tỉ dương cũng không là số hữu tỉ âm?
a) +) Ta có: \( - 3,75 = \frac{{ - 375}}{{100}} = \frac{{ - 15}}{4} = \frac{{ - 45}}{{12}}\).
Do \( - 7 > - 45\) nên \(\frac{{ - 7}}{{12}} > \frac{{ - 45}}{{12}}\).
+) Ta có: \(\frac{0}{{ - 3}} = 0\). Nên \(\frac{0}{{ - 3}} < \frac{4}{5}\).
b) Các số hữu tỉ dương là: \(\frac{4}{5};\,5,12\).
Các số hữu tỉ âm là: \(\frac{{ - 7}}{{12}};\, - 3;\, - 3,75\)
Do \(\frac{0}{{ - 3}} = 0\) nên số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{ - 3}}\).
Hãy so sánh hai số hữu tỉ: \(0,834\) và \(\frac{5}{6}\).
Ta có \(\frac{5}{6} = 0,8(3)\) = \(0,8333....\)
Vì:\(0,834 > 0,8333... \Rightarrow 0,834 > \frac{5}{6}\)
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:
x | x1 = 3 | x2 = 5 | X3 = 7 |
y | y1 = 9 | y2 = 15 | y3 = 21 |
a) Hãy xác định hệ số tỉ lệ của y đối với x
b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)
c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3
b) Ta có:
\(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\)
c) Ta có:
\(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)