A=x^3-30*x^2-31*x+1
a) Ta có: \(x=31\Rightarrow x-1=30\)
Thay x=31 và x-1=30 vào biểu thức A ta có:
\(A=x^3-\left(x-1\right)x^2-x.x+1\)
\(=x^3-x^3+x^2-x^2+1\)
\(=1\)
Câu 1: a) Tìm x, biết: 1/(1 ×2)+ 1/(2 ×3)+ 1/(3 ×4 )+⋯.+ 1/(x ×( x+1))= 30/31
ĐKXĐ: x khác 0
1/(1 ×2)+ 1/(2 ×3)+ 1/(3 ×4 )+⋯.+ 1/(x ×( x+1))= 30/31
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x +1 = 30/31
1 - 1/x+1 = 30/31
x+1-1/x+1 = 30/31
x/x+1 = 30/31
31x = 30x + 30
31x - 30x = 30
x = 30(TM)
Vậy x là 30.
1. Tìm X biết :
a. 15 _ (X_8 ) = 2
b.2 x X _ 19 =31
c. 30 _ 3 x (X + 1) = 15
Bạn ơi dấu . là dấu nhân nhé!!!
a. 15 -(x - 8) = 2
(x - 8)=15-2
(x - 8)=13
x =13+8
x=21
b. 2.x-19=31
2x =31+19
2x =50
x =50:2
x =25
c. 30-3.(x+1)=15
3.(x+1)=30-15
3.(x+1)=15
(x+1)=15:3
(x+1)=5
x =5-1
x=4
T mk nhé bạn ^...^ ^_^
Tính giá trị biểu thức: \(A=\dfrac{x^{98}+x^{97}+x^{96}+...+x+1}{x^{32}+3^{31}+3^{30}+...+x+1}\)khi x=2
\(A=\dfrac{x^{98}+x^{97}+x^{96}+...+x+1}{x^{32}+x^{31}+x^{30}+...+x+1}\\ x=2\\ \Rightarrow A=\dfrac{2^{98}+2^{97}+2^{96}+...+2+1}{2^{32}+2^{31}+2^{30}+...+2+1}\)
Đặt
\(B = 2^{98} + 2^{97} + 2^{96} + ... + 2 + 1 \\ C = 2^{32} + 2^{31} + 2^{30} + ... + 2 + 1\)
\(B=2^{98}+2^{97}+2^{96}+...+2+1\\ =\left(2-1\right)\left(2^{98}+2^{97}+2^{96}+...+2+1\right)\\ =2^{99}-1\\ =\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)\\ C=2^{32}+2^{31}+2^{30}+...+2+1\\ =\left(2-1\right)\left(2^{32}+2^{31}+2^{30}+...+2+1\right)\\ =2^{33}-1\\ A=\dfrac{B}{C}=\dfrac{\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)}{2^{33}-1}=2^{66}+2^{33}+1\)
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
tìm x biết 1+x^3+...+x^30 +x^31=(1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^16)
Tìm x
A, ( x - 1 )^x+2 = ( x - 1 )^x+4
B, 1/4 × 2/6 × 3/8 × 4/10 × 5/12 ×....× 30/62 × 31/64 = 2^x
\(A\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\\\Leftrightarrow \left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\\ \Leftrightarrow\left(x-1\right)^{x+2}\left(\left(x-1\right)^{x+2}+1\right)=0\\ \Leftrightarrow\left(x-1\right)^{x+2}=0hoac\left(x-1\right)^{x+2}+1=0\)
Giả tiếp đc x=1
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Rút gọn.
\(B=\dfrac{x^{39}x^{36}x^{33}...x^31}{x^{40}x^{38}x^{36}...x^21}=\dfrac{x^{\left(39+36+33+...+3\right)}}{x^{\left(40+38+36+...+2\right)}}\)
ta có: \(39+36+33+...+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
=> \(B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
Tương tự như B => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Ta có:
\(B=\dfrac{x^{\left(39+36+33+....+3\right)}}{x^{\left(40+38+36+....+2\right)}}\)
\(39+36+33+....+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
\(\Rightarrow B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
tương tự => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)