tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 7; f(x) chia cho x-2 thì dư 5; f(x) chia cho thì được thương là 3x và còn dư
CHO đa thức f(x)=ax^2+(a+b)*x+b. Tìm a và b biết rằng f(x) nhận -5/4 là nghiệm và khi chia cho đa thức (x-2) thì có dư là 39
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b
tìm đa thức f(x) biết rằng f(x) chia cho x+3 duw, f(x) chia cho x-2 dư 6, f(x) chia cho x2+x-6 được thương là 2x và còn dư
Gọi thương của phép chia f(x) cho x+3 là A(x)
thương của phép chia f(x) cho x-2 là B(x)
Ta có: \(f\left(x\right)=\left(x+3\right).A\left(x\right)+1\) \(\Rightarrow\) \(f\left(-3\right)=1\)
\(f\left(x\right)=\left(x-2\right).B\left(x\right)+6\) \(f\left(2\right)=6\)
Gọi dư của phép chia f(x) cho x2 + x - 6 là ax + b
Ta có: \(f\left(x\right)=\left(x^2+x-6\right).2x+ax+b\)
\(\Leftrightarrow\)\(f\left(x\right)=\left(x-2\right)\left(x+3\right).2x+ax+b\)
Lần lượt thay \(x=2;\) \(x=-3\) ta có:
\(\hept{\begin{cases}f\left(2\right)=2a+b=6\\f\left(-3\right)=-3a+b=1\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=1\\b=4\end{cases}}\)
Vậy \(f\left(x\right)=\left(x^2+x-6\right).2x+x+4\)
\(=2x^3+2x^2-11x+4\)
Tìm đa thức f(x) biết :
f(x) chia cho x - 3 thì dư 2
f(x) chia cho x + 4 thì dư 9
f(x) chia cho x2 + x - 12 thì được thương là x2 + 3 và còn dư.
Tìm đa thức f(x) biết f(x) chia x - 2 dư 2, f(x) chia x - 3 dư 7; f(x) chia x^2 - 5x + 6 được thương 1 - x^2 và còn dư
tìm đa thức f(x) biết rằng f(x) chia cho x+3 duw, f(x) chia cho x-2 dư 6, f(x) chia cho x2+x-6 được thương là 2x và còn dư
Cho đa thức f(x)=ax²+bx+c
A, biết f(0)=0, f(1)=2013 và f(-1)=2012. Tính a b c
B, Chứng minh rằng nếu f(1)=2012; f(-2)=f(-3)=2036 thì đa thức f(x) vô nghiệm
a)giải phương trình sau
\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right).\left(x^2+506x-2017\right)\)
b) tìm đa thức f(x) biết rằng f(x) chia cho x+3 duw, f(x) chia cho x-2duw 6, f(x) chia cho x2+x-6 được thương là 2x và còm dư
Cho đa thức f(x) biết: f(x) chia cho x-2 dư 5, f(x) chia cho x-3 dư 7, f(x) chia cho (x-2)(x-3) được thương x2-1 và đa thức dư là đa thức bậc nhất đối với x.
Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha
Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b
h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3
+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)
+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)
a) Cho đa thức f(x)= ax2+bx+c với a,b,c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có trị nguyên. Chứng minh rằng 2a,2b,2c có giá trị nguyên.
c) Tìm x,y thuộc N biết : 36-y2=8.(x-2010)2
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
\(36-y^2\le36\)
\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)
\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)
Giai tiep nhe