Giải các pt sau: a)căn(x-3)^2=3-x b)căn4x^2-20x+25/+2x=5 c)căn1-12x+36x^2=5
Giải các pt sau: a)căn2x+5=căn1-x b)căn x^2-x=căn3-x c)căn2x^2-3=căn4x-3
a: ĐKXĐ: 2x+5>=0 và 1-x>=0
=>-5/2<=x<=1
PT =>2x+5=1-x
=>3x=-4
=>x=-4/3(nhận)
b: ĐKXĐ: x^2-x>=0 và 3-x>=0
=>x<=3 và (x>=1 hoặc x<=0)
=>x<=0 hoặc (1<=x<=3)
PT =>x^2-x=3-x
=>x^2=3
=>x=căn 3(nhận) hoặc x=-căn 3(nhận)
c: ĐKXĐ: 2x^2-3>=0 và 4x-3>=0
=>x>=3/4 và x^2>=3/2
=>x>=3/4 và \(\left[{}\begin{matrix}x>=\dfrac{\sqrt{6}}{4}\\x< =\dfrac{-\sqrt{6}}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>=\dfrac{3}{4}\\x< =-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\)
PT =>2x^2-3=4x-3
=>2x^2-4x=0
=>2x(x-2)=0
=>x=0(loại) hoặc x=2(nhận)
\(\sqrt{2x+5}=\sqrt{1-x}\) (ĐK: \(-\dfrac{5}{2}\le x\le1\))
\(\Leftrightarrow2x+5=1-x\)
\(\Leftrightarrow2x+x=1-5\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)
b) \(\sqrt{x^2-x}=\sqrt{3-x}\) (ĐK: \(\left[{}\begin{matrix}1\le x\le3\\x\le0\end{matrix}\right.\))
\(\Leftrightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\left(tm\right)\)
c) \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (ĐK: \(x\ge\dfrac{\sqrt{6}}{2}\))
\(\Leftrightarrow2x^2-3=4x-3\)
\(\Leftrightarrow2x^2=4x\)
\(\Leftrightarrow x^2=2x\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
5. giải phương trình
a.\(\sqrt{\left(x-3\right)^2}=3-x\)
b.\(\sqrt{4x^2-20x+25}+2x=5\)
c.\(\sqrt{1-12x+36x^2}=5\)
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
Giải các phương trình sau: 1)√3x²-√12=0
2)√(x-3)²=9
3)√4x²+4x+1=6
4)√(2x-1)²=3
5)√(x-3)²=3-x 6)√4x²-20x+25+2x=5
7)√1-12x+36x²=5
1.
$\sqrt{3x^2}-\sqrt{12}=0$
$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$
$\Leftrightarrow 3x^2=12$
$\Leftrightarrow x^2=4$
$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$
2.
$\sqrt{(x-3)^2}=9$
$\Leftrightarrow |x-3|=9$
$\Leftrightarrow x-3=9$ hoặc $x-3=-9$
$\Leftrightarrow x=12$ hoặc $x=-6$
3.
$\sqrt{4x^2+4x+1}=6$
$\Leftrightarrow \sqrt{(2x+1)^2}=6$
$\Leftrightarrow |2x+1|=6$
$\Leftrightarrow 2x+1=6$ hoặc $2x+1=-6$
$\Leftrightarrow x=\frac{5}{2}$ hoặc $x=\frac{-7}{2}$
Giải các phương trình:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
b) \(\sqrt{4x^2-20x+25}+2x=5\)
c) \(\sqrt{1-12x+36x^2}=5\)
Tìm x, biết:
a) √(x-3)2 =3-x
b) √25-20x + 4x2 +2x =5
c) √ 1-12x+36x2 = 5
Help me, đang gấp!!!
Giải:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3-x\\x-3=x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+x=3+3\\x-x=-3+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\0x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\0x=0\end{matrix}\right.\)
Vậy ...
b) \(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{5^2-2.5.2x+\left(2x\right)^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+2x=5-5\\-2x-2x=-5-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\-4x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
c) \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-6x\right)^2}=5\)
\(\Leftrightarrow\left|1-6x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=1-5\\6x=1-\left(-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=-4\\6x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy ...
Giải pt
a)căn x^2-4x+4=x+3
a)căn 9x^2+12x+4=4x
a)căn x^2-8x+16=4-x
a)căn 9x^2-6x+1-5x=2
a)căn 25-10x+x^2-2x=1
a)căn 25x^2-30x+9=x-1
a)căn x^2-6x+9-x-5=0
a)2x^2-căn 9x^2-6x+1=-5
b)căn x+5=căn 2x
b)căn 2x-1=căn x-1
b)căn 2x+5=căn 1-x
b)căn x^2-x=căn 3-x
b)căn 3x+1=căn 4x-3
b)căn x^2-x=3x-5
b)căn 2x^2-3=căn 4x-3
b)căn x^2-x-6=căn x-3
Giúp mình với ạ
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
Giải các PT sau:
a,4x-3/x-5=29/3
b,2x-1/5-3x=2
c,4x-5/x-1=2+x/x-1
d,7/x+2=3/x-5
e,2x+5/2x-x/x+5=0
f,12x+1/11x-4+10x-4/9=20x+17/18
\(a.\frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow\frac{3\left(4x-3\right)}{3\left(x-5\right)}=\frac{29\left(x-5\right)}{3\left(x-5\right)}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow3\left(4x-3\right)-29\left(x-5\right)=0\\ \Leftrightarrow12x-9-29x+145=0\\ \Leftrightarrow-17x+136=0\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=\frac{-136}{-17}=8\)
\(b.\frac{2x-1}{5-3x}=2\\ \Leftrightarrow\frac{2x-1}{5-3x}=\frac{4}{2}\\ \Leftrightarrow\frac{2\left(2x-1\right)}{2\left(5-3x\right)}=\frac{4\left(5-3x\right)}{2\left(5-3x\right)}\\ \Leftrightarrow2\left(2x-1\right)=4\left(5-3x\right)\\ \Leftrightarrow2\left(2x-1\right)-4\left(5-3x\right)=0\\ \Leftrightarrow4x-2-20+12x=0\\ \Leftrightarrow16x-22=0\\ \Leftrightarrow16x=22\\ \Leftrightarrow x=\frac{22}{16}=\frac{11}{8}\)
\(c.\frac{4x-5}{x-1}=\frac{2+x}{x-1}\\ \Leftrightarrow4x-5=2+x\\ \Leftrightarrow4x-5-2-x=0\\ \Leftrightarrow3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\frac{7}{3}\)
\(d.\frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow\frac{7\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}=\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-5\right)}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7\left(x-5\right)-3\left(x+2\right)=0\\ \Leftrightarrow7x-35-3x-6=0\\ \Leftrightarrow4x-41=0\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)
\(e.\frac{2x+5}{2x}-\frac{x}{x+5}=0\\ \Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x.2x}{2x\left(x+5\right)}=0\\ \Leftrightarrow\left(2x+5\right)\left(x+5\right)-2x^2=0\\ \Leftrightarrow2x^2+10x+5x+25-2x^2=0\\ \Leftrightarrow15x+25=0\\ \Leftrightarrow15x=-25\\ \Leftrightarrow x=\frac{-25}{15}=\frac{-5}{3}\)
\(f.\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\\\Leftrightarrow\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{\left(10x-4\right).2\left(11x-4\right)}{9.2\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\\ \Leftrightarrow18\left(12x+1\right)+\left(10x-4\right).2\left(11x-4\right)=\left(20x+17\right)\left(11x-4\right)\\ \Leftrightarrow220x^2+48x+50=220x^2+107x-68\\ \Leftrightarrow48x+50=107x-68\\ \Leftrightarrow48x-107x=-68-50\\ \Leftrightarrow59x=-118\\ \Leftrightarrow x=-2\)
Giải các phương trình sau:
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\sqrt{1-12x+36x^2}=5\)
\(\sqrt{x^2+x}=x\)
\(\sqrt{x^2-4x+3}=x-2\)
\(\sqrt{1-x^2}=x-1\)
\(a,\sqrt{4x^2-20x+25}+2x=5\)
\(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{1-12x+36x^2}=5\)
\(\Rightarrow6x-1=5\)
\(\Rightarrow6x=6\Rightarrow x=1\)
\(c,\sqrt{x^2+x}=x\)
\(\Rightarrow x^2+x=x^2\)
\(\Rightarrow x=0\)
\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)
\(\Rightarrow-1=0\) (vô lý)
=> PT vô nghiệm
Giải các phương trình sau: a)căn x-1+căn4x-4-căn25x-25 +2=0 b)1/2căn x-1 -3/2căn9x-9 +24căn x-1/64=-17
a: ĐKXĐ: x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)
=>-2*căn x-1=-2
=>căn x-1=1
=>x-1=1
=>x=2
b: ĐKXĐ: x>=1
\(PT\Leftrightarrow\sqrt{x-1}\cdot\dfrac{1}{2}-\dfrac{9}{2}\cdot\sqrt{x-1}+\dfrac{24\sqrt{x-1}}{8}=-17\)
=>\(-\sqrt{x-1}=-17\)
=>\(\sqrt{x-1}=17\)
=>x-1=289
=>x=290