Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô nàng Thiên Yết
Xem chi tiết

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

Khách vãng lai đã xóa

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

Khách vãng lai đã xóa
Kientu Nguyen
9 tháng 2 2020 lúc 19:54

\(P=\frac{1}{x^2+2x+6}\)

để pmin thì \(x^2+2x+6max\)

\(\frac{1}{x^2+2x+6}=\frac{1}{\left(x+1\right)^2+5}\)lớn hơn hoặc bằng 1/5 

=>Pmin=1/5 khi và chỉ khi x=-1

Khách vãng lai đã xóa
Pham Thanh Thuy
Xem chi tiết
Trần Đức Thắng
11 tháng 6 2015 lúc 22:49

\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))

=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy MaxP = 1/5 khi x = -1

câu b tương tự

Nhi Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 10:26

\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)

Quinn
25 tháng 11 2021 lúc 10:39

a) Ta có: x2+2x+6
        =x2+2x+1+5
        =(x+1)2+5 ≤ 5 với mọi x
=>x2+x+6=5
=>\(\dfrac{1}{x^2+x+6}\)\(\dfrac{1}{5}\)
dấu bằng xảy ra ⇔x=-1

b) 

x2+4x+6=x2+4x+4+2=(x+2)2+2 ≥ 2

⇒A=\(\dfrac{x^2+4x+6}{3}\)≥ \(\dfrac{2}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là \(\dfrac{2}{3}\), dấu ''='' xảy ra khi và chỉ khi x = -2

TranNgocThienThu
Xem chi tiết
Phùng Minh Quân
26 tháng 5 2018 lúc 12:04

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
26 tháng 5 2018 lúc 12:09

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa
Kim Taehyungie
Xem chi tiết
Akai Haruma
22 tháng 2 2021 lúc 22:29

Lời giải:

$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$

Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$

Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 22:43

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)

nguyễn văn hữu
Xem chi tiết
Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
nguyễn văn b
Xem chi tiết
Phùng Minh Quân
12 tháng 5 2019 lúc 10:51

C1 : 

\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2 : 

\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)

\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)

+) Nếu \(B=1\) thì \(x=0\)

+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)

                                                        \(\Leftrightarrow\)\(4B-3\ge0\)

                                                        \(\Leftrightarrow\)\(B\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)