\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)
a) Ta có: x2+2x+6
=x2+2x+1+5
=(x+1)2+5 ≤ 5 với mọi x
=>x2+x+6=5
=>\(\dfrac{1}{x^2+x+6}\)≤\(\dfrac{1}{5}\)
dấu bằng xảy ra ⇔x=-1
b)
x2+4x+6=x2+4x+4+2=(x+2)2+2 ≥ 2
⇒A=\(\dfrac{x^2+4x+6}{3}\)≥ \(\dfrac{2}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là \(\dfrac{2}{3}\), dấu ''='' xảy ra khi và chỉ khi x = -2