Rút gọn biểu thức:
\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Rút gọn các biểu thức :
a) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Rút gọn biểu thức
a) \(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\)
b) \(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\)
a)
\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)
\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))
\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)
b)
\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)
\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))
\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)
rút gọn biểu thức
\(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Rút gọn biểu thức:
A= \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1\)
Rút gọn biểu thức sau:
B = \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Bạn rút từ trong căn trước:
căn của 29-12 căn 5 ta biến đổi thành:
(2 căn 5 ) bình- 2.2 căn 5. 3 + 9
= ( 2 căn 5 -3 )2
rút gọn rồi ta sẽ ra kết quả
=\(\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}\)
=\(\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
=\(\sqrt{5}-\sqrt{3-l2\sqrt{5}-3l}\)
=\(\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)(vi \(2\sqrt{5}-3\)>0)
=\(\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
=\(\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)
=\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}-l\sqrt{5}-1l\)
=\(\sqrt{5}-\sqrt{5}+1\)(vi \(\sqrt{5}-1\)>0)
=1
\(B=\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}=\sqrt{5}-\sqrt{6-\sqrt{20}}=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=1\)
Rút gọn các biểu thức:
\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7-2}}}\)
Tính giá trị biểu thức:
\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Rút gọn biểu thức
1) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
2) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}+2-\sqrt{5}\)
\(=4\)
2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)
\(=3-\sqrt{3}+3+\sqrt{3}\)
\(=6\)
Rút gọn các biểu thức sau:
A =\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
B =\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)