\(\frac{10a.b}{10a.c}\)= \(\frac{2}{3}\)
\(\frac{b}{c}=3\)
\(Tínha\)
Tính
a) \(\left( {\frac{4}{5} - 1} \right):\frac{3}{5} - \frac{2}{3}.0,5\)
b) \(1 - {\left( {\frac{5}{9} - \frac{2}{3}} \right)^2}:\frac{4}{{27}}\)
c)\(\left[ {\left( {\frac{3}{8} - \frac{5}{{12}}} \right).6 + \frac{1}{3}} \right].4\)
d) \(0,8:\left\{ {0,2 - 7.\left[ {\frac{1}{6} + \left( {\frac{5}{{21}} - \frac{5}{{14}}} \right)} \right]} \right\}\)
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
Tính
a) \(\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3};\)
b) \({\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}.\)
a) `1/9-0,3. 5/9+1/3`
`=1/9-3/10 . 5/9+1/3`
`=1/9-15/90+1/3`
`=1/9-1/6+1/3`
`=2/18-3/18+6/18`
`=5/18`
b) `(-2/3)^2+1/6-(-0,5)^3`
`=4/9+1/6-(-0,125)`
`=4/9+1/6+0,125`
`=4/9+1/6+1/8`
`=32/72+12/72+9/72`
`=53/72`
--\(Cho\frac{a}{b}=\frac{3}{4}.TínhA=\frac{a^2+3b^2}{a^2-3b^2}\)
--Cho\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CMR \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Please HELP meeeeeee🙏 🙏 🙏 🙏
Dựa vào tính chất lũy thừa để tính
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\)
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \)
Cho \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=2012\). TínhA = \(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(A=\frac{a^2+\left(b^2-a^2\right)}{a+b}+\frac{b^2+\left(c^2-b^2\right)}{b+c}+\frac{c^2+\left(a^2-c^2\right)}{c+a}\)
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\left(\frac{b^2-a^2}{a+b}+\frac{c^2-b^2}{b+c}+\frac{a^2-c^2}{c+a}\right)=2012+\left(b-a+c-b+a-c\right)=2012\)
tínhA / B biết
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{2008}+\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}\)
giải giúp mk nha nhớ trình bày rõ ràng ai giải đúng và nhanh nhất mk tick cho
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
mik đọc nhầm đề rồi.Kết quả là 9/187
Li-ke cho mik nhé!
tínhA = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{100}\right)\)
\(A=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{101}{100}\)
\(A=\frac{101}{2}\)
A = \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{101}{100}\)
A = \(\frac{101}{2}\)
\(A=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).....\left(1+\frac{1}{100}\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.........\frac{101}{100}\)
\(A=\frac{101}{2}\)
\(Cho\frac{a}{2b}=\frac{b}{2c}=\frac{d}{2a}\left(a,b,c>0\right)\)
\(TínhA=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
\(TínhA=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)