Cho tam giác ABC vuông tại A , AB = 3√3 (cm) , AC=2√5 (cm). Tính BC và các góc B,C
1. Cho tam giác ABC đường cao AH và trung tuyến AM chia góc A thành 3 góc = nhau, K thuộc AC:AK=AH.CMR: a) góc AKM vuông b) Tính các góc của tam giác ABC
2. Cho tam giác ABC đều. D thuộc BC :BD=1/3 BC. ĐỂ vuông góc với BC ( E thuộc AB ). DF vuông góc với AC ( F thuộc AC ). Chứng minh a) BD =CF b) tam giác DEF đều
3. Cho tam giác ABC vuông tại A: AB = 15 cm, AC =20 cm., AH =12cm. Tính AB và AC
5. Cho tam giác ABC có AB =AC =5 cm, BC =6cm, đường phân giác AF. CMR: a) FB =FD, AF vuông góc với BC b) AF=?
4. Cho tam giác ABC vuông tại A, đường cao AH =6cm, BC =12,5cm, tỉ số HB :HC=9:16. Tính AB, AC
6. Cho tam giác ABC : BC =7,5cm, CA =4,5cm, AB =6cm. Hỏi tam giác ABC là tam giác gì?
7. Cho hình chữ nhật ABCD : AC=29cm, CD =20 cm. Tính diện tích hình chữ nhật
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
cho tam giác abc cân tại a xo ab=ac=5 cm, bc=8cm. kẻ ah vuông góc vs bc ( h thuộc bc )
1) cm hb=hc
2)tính độ dài ah
3) kẻ hd thuộc ab
kẻ HE vuông góc vs AC
cm tam giác HDE cân
4) từ b,c kẻ các đường vuông góc vs ab và ac chúng cắt nhau tại M. cm 3 điểm a,h, m thẳng hàng
a)xét tam giác vuông ABH và tam giác vuông ACH có
cạnh AB chung
AB=AC
do đó tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
=>HB=HC
b) ta có
HC=HB
mà BC= 8
=> HC=4
áp dụng định lí Py-ta-go vào tam giác vuông AHC có
AC2 . HC2 =AH2
hay AH2 = 52 . 42=400
=>AH=20
1. Cho ABC là tam giác vuông tại A. Tìm các tỉ số lượng giác của góc B trong các trường hợp sau:
a) BC = 5 cm; AB = 3 cm;
b) BC = 13 cm; AC = 12 cm;
c) BC = 5V2 cm; AB = 5 cm;
d) AB = a v3; AC = a.
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)
hay BC=2a
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)
Bài 3: Cho tam giác ABC có đường cao BH. Biết AB = 40 cm, AC = 58 cm, BC = 42 cm
a) ABC có là tam giác vuông không? vì sao?
b) Tính các tỉ số lượng giác của góc A
c) Kẻ HE vuông AB tại E, HF vuông BC tại F. Tính BH, BE, BF và diện tích EFCA
Bài 3:
Giải tam giác MNP vuông tại M có góc N = 37 độ, NP 25 cm (độ dài làm tròn đến chữ số thập phân thứ nhất, góc làm tròn đến độ
Mong bạn Phong giúp mình:((
Lưu ý: Giải chi tiết từng bước
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?
Đăng như vậy có ngày không ai giúp bạn đâu.
Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm, tia phân giác của góc B và góc C cắt nhau tại O. Vẽ OD vuông góc với BC, OE vuông góc với AB, OF vuông góc với AC.
a) Chứng minh AB + AC - BC = 2AE
b) Tính khoảng cách từ điểm O từ các cạnh của tam giác ABC
c) tính khoảng cách từ O đến các góc của tam giác ABC
các bn lm chi tiết giùm mik nha, mai mik thi r, khỏi vẽ hình cũng dc
Cho tam giác ABC vuông tại A có AB bằng 3 cm BC = 5 cm a tính AC, góc B góc c b) phân giác của góc A cắt BC tại E Tính BE CE d)kẻ đường c kẻ đường cao AH và đường trung tuyến AM tính diện tích tam giác AMH
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
Bài 1 tam giác ABC vuông tại A có AB=5 cm BC = 13 cm . Tính góc B và góc C
Bài 2 tam giác ABC có A = 90 độ góc B = 30 độ cạnh BC = 10 cm . Tính góc C cạnh AB , AC
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC (H thuộc BC).
1) Nếu sin ACB = 3/5 và BC = 20 cm. Tính các cạnh AB, AC, BH và góc ACB (số đo góc làm tròn đến độ)
2) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D. Chứng minh: AD.AC = BH.BC.
3) Kẻ tia phân giác BE của DBA ( E thuộc đoạn DA). Chứng minh: tan EBA = AD/AB + BD
4) Lấy điểm K thuộc đoạn AC, Kẻ KM vuông góc với HC tại M, KN vuông góc với AH tại N. chứng minh : NH.NA+MH.MC=KA.KC
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)