so sánh M=\(\dfrac{10^{25}+1}{10^{26}+1}\)và N=\(\dfrac{10^{26}+1}{10^{27}+1}\)
so sánh D và E, biết:
D= 10^25-1/10^26-1 và E= 10^26-1/10^27-1
BÀi 1 : So sánh
A=1025+1/1026+1
B =1026+1/1027+1
so sánh a và b
\(A=10^{25}+\frac{1}{10^{26}}+1=1\cdot10^{25}\)
\(B=10^{26}+\frac{1}{10^{27}}+1=1\cdot10^{26}\)
\(1\cdot10^{25}< 1\cdot10^{26}\Rightarrow A< B\)
1. Tính giá trị của biểu thức :
a) ( 1 - \(\dfrac{1}{3}\) ) . ( 1- \(\dfrac{1}{6}\) ) . ( 1 - \(\dfrac{1}{10}\) ) ...... ( 1 - \(\dfrac{1}{780}\) )
b) \(\dfrac{2^4}{7.15}+\dfrac{2^4}{15.23}+\dfrac{2^4}{23.31}+.....+\dfrac{2^4}{55.63}-\dfrac{6.\left(-14\right)-17.\left(-7\right).\left(-2\right)}{-22.28}\)
2. Tìm số tự nhiên n biết : \(\dfrac{4}{3.5}+\dfrac{8}{5.9}+\dfrac{12}{9.15}+.....+\dfrac{32}{n.\left(n+16\right)}=\dfrac{16}{25}\)
3. So sánh A và B biết :
a) A = \(\dfrac{2003.2004-1}{2003.2004}\) và B = \(\dfrac{2004.2005-1}{2004.2005}\)
b) A = \(\dfrac{10^{25}+1}{10^{26}+1}\) và B = \(\dfrac{10^{26}+1}{10^{27}+1}\)
a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)
So sánh A và B biết:
a) A =\(\frac{2003.2004-1}{2003.2004}\)và B =\(\frac{2004.2005-1}{2004.2005}\)
b) A =\(\frac{10^{25}+1}{10^{26}+1}\) và B = \(\frac{10^{26}+1}{10^{27}+1}\)
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
2. không tính kết quả, hay so sánh:
b) M= \(\dfrac{10^{2023}+1}{10^{2024}+1}\) và N= \(\dfrac{10^{2022}+1}{10^{2023}+1}\)
b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )
Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)
Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Cho M=\(\dfrac{10^8+2}{10^8-1}\) và N=\(\dfrac{10^8}{10^8-3}\).Em hãy so sánh M và N.
Giúp mình với
\(M=\dfrac{10^8+2}{10^8-1}=\dfrac{\left(10^8-1\right)+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(N=\dfrac{10^8}{10^8-3}=\dfrac{\left(10^8-3\right)+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(1+\dfrac{3}{10^8-3}< 1+\dfrac{3}{10^8-1}\) nên \(M< N\)
2/ So sánh các phân số sau :
a/ \(\dfrac{7}{10}\) và \(\dfrac{11}{15}\) ; b/ \(\dfrac{-1}{8}\) và \(\dfrac{-5}{24}\) ; c/ \(\dfrac{25}{100}\) và \(\dfrac{10}{40}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)