Hai Nhắc lại quy tắc công và trừ hai phân số tối th hiện phép tính
a) - 7/8 + 5/12
b) - 5/7 - 8/21
Nhắc lại quy tắc cộng và trừ hai phân số rồi thực hiện phép tính:
\(a)\frac{{ - 7}}{8} + \frac{5}{{12}};b)\frac{{ - 5}}{7} - \frac{8}{{21}}\)
+) Quy tắc cộng 2 phân số:
Quy tắc cộng hai phân số cùng mẫu
Muốn cộng hai phân số có cùng mẫu số, ta cộng tử số với nhau và giữ nguyên mẫu số.
Quy tắc cộng hai phân số khác mẫu
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu.
+) Quy tắc trừ 2 phân số:
* Quy tắc cộng hai phân số cùng mẫu
Muốn trừ 2 phân số có cùng mẫu số, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu.
* Quy tắc cộng hai phân số khác mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
\(\begin{array}{l}a)\frac{{ - 7}}{8} + \frac{5}{{12}}\\ = \frac{{ - 21}}{{24}} + \frac{{10}}{{24}}\\ = \frac{{ - 11}}{{24}}\\b)\frac{{ - 5}}{7} - \frac{8}{{21}}\\ = \frac{{ - 15}}{{21}} - \frac{8}{{21}}\\ = \frac{{ - 23}}{{21}}\end{array}\)
Chú ý:
Ta thường chọn mẫu số chung của các phân số là BCNN của các mẫu số của chúng.
Em hãy nhắc lại quy tắc trừ hai phân số cùng mẫu (cả tử và mẫu đều dương) đã học rồi tính các hiệu sau: \(\dfrac{7}{{13}} - \dfrac{5}{{13}}\) và \(\dfrac{3}{4} - \dfrac{1}{5}\)
* Quy tắc trừ hai phân số cùng mẫu: Muốn trừ 2 phân số có cùng mẫu số, ta lấy tử số của phân số thứ nhất trừ đi tử số của phân số thứ hai và giữ nguyên mẫu.
* Ta có: \(\dfrac{7}{{13}} - \dfrac{5}{{13}} = \dfrac{{7 - 5}}{{13}} = \dfrac{2}{{13}}\) và \(\dfrac{3}{4} - \dfrac{1}{5} = \dfrac{{15}}{{20}} - \dfrac{4}{{20}} = \dfrac{{15 - 4}}{{20}} = \dfrac{{11}}{{20}}\)
Để thực hiện phép cộng \(\dfrac{5}{7} + \dfrac{{ - 3}}{4}\), em hãy làm theo các bước sau:
+ Quy đồng mẫu hai phân số \(\dfrac{5}{7}\) và \(\dfrac{{ - 3}}{4}\)
+ Sử dụng quy tắc cộng hai phân số cùng mẫu để tính tổng hai phân số sau khi đã quy đồng.
Ta có: \(\dfrac{5}{7} = \dfrac{{5.4}}{{7.4}} = \dfrac{{20}}{{28}}\) và \(\dfrac{{ - 3}}{4} = \dfrac{{ - 3.7}}{{4.7}} = \dfrac{{ - 21}}{{28}}\)
Như vậy, \(\dfrac{{20}}{{28}} + \dfrac{{ - 21}}{{28}} = \dfrac{{20 + \left( { - 21} \right)}}{{28}} = \dfrac{-1}{{28}}\)
Em hãy nhớ lại quy tắc nhân hai phân số (có tử và mẫu đều dương), rồi tính \(\dfrac{8}{3}.\dfrac{3}{7}\) và \(\dfrac{4}{6}.\dfrac{5}{8}\).
* Quy tắc nhân 2 phân số: Nhân tử với tử, mẫu với mẫu.
\(\dfrac{8}{3}.\dfrac{3}{7} = \dfrac{{8.3}}{{3.7}} = \dfrac{{24}}{{21}} = \dfrac{{24:3}}{{21:3}} = \dfrac{8}{7}\)
\(\dfrac{4}{6}.\dfrac{5}{8} = \dfrac{{4.5}}{{6.8}} = \dfrac{{20}}{{48}} = \dfrac{{20:4}}{{48:4}} = \dfrac{5}{{12}}\)
Em hãy nhắc lại quy tắc cộng hai phân số cùng mẫu ( có tử và mẫu dương) rồi tính các tổng \(\dfrac{8}{{11}} + \dfrac{3}{{11}}\) và \(\dfrac{9}{{12}} + \dfrac{{11}}{{12}}\).
Quy tắc cộng hai số nguyên cùng mẫu:
Ta lấy tử số cộng với nhau và giữ nguyên mẫu số.
+) \(\dfrac{8}{{11}} + \dfrac{3}{{11}} = \dfrac{{8 + 3}}{{11}} = \dfrac{{11}}{{11}} = 1\)
+) \(\dfrac{9}{{12}} + \dfrac{{11}}{{12}} = \dfrac{{9 + 11}}{{12}} = \dfrac{{20}}{{12}}\)\( = \dfrac{{20:4}}{{12:4}} = \dfrac{5}{3}\)
a) Quy đồng mẫu các phân số sau:
i.\(\frac{5}{{12}}\) và \(\frac{7}{{30}}\); ii.\(\frac{1}{2};\,\,\frac{3}{5}\) và \(\frac{5}{8}\).
b) Thực hiện các phép tính sau:
i.\(\frac{1}{6} + \frac{5}{8}\); ii.\(\frac{{11}}{24} - \frac{7}{{30}}\)
a)
i.Ta có: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)
ii.Ta có: BCNN(2, 5, 8) = 40
40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:
\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)
\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)
\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).
b)
i.Ta có: BCNN(6, 8) = 24
24 : 6 = 4; 24: 8 = 3. Do đó
\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)
ii. Ta có: BCNN(24, 30) = 120
120: 24 = 5; 120: 30 = 4. Do đó:
\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)
1. Quy đồng mẫu các phân số sau:
a) \(\frac{5}{{12}}\) và \(\frac{7}{{15}}\); b) \(\frac{2}{7};\,\,\frac{4}{9}\) và \(\frac{7}{{12}}\).
2. Thực hiện các phép tính sau:
a) \(\frac{3}{8} + \frac{5}{{24}};\) b) \(\frac{7}{{16}} - \frac{5}{{12}}.\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
Câu 24: Thực hiện phép tính 3 /8 5 / 24 + với kết quả là phân số tối giản là: A. 14 24 B. 7 12 C. 112 192 D. 12 7
1. V iết tập hợp các số tự nhiên, số tự nhiên khác 0? số nguyên?vẽ hình minh họa trên trục số.
2. Viết dạng tổng quát các tính chất của phép cộng, phép nhân các số nguyên.
3. Định nghĩa lũy thừa bậc n của a, viết công thức tổng quát.
4. Viết các công thức về lũy thừa.
5. Khi nào số tự nhiên a chia hết cho số tự nhiên b.
6. Phát biểu và viết dưới dạng tổng quát tính chất chia hết cho 1 tổng ?
7. Phát biểu các dấu hiệu chia hết cho 2; 5; 3; 9 ? (4; 8; 11; 25; 125)?
8. Thế nào là số nguyên tố, hợp số? cho ví dụ.
9. Thế nào là hai số nguyên tố cùng nhau.
10. ƯCLN của hai hay nhiều số là gì nêu cách tìm.
11. BCNN của hai hay nhiều số là gì, nêu cách tìm.
12. Quy tắc cộng hai số nguyên cùng dấu, hai số nguyên khác dấu,trừ hai số nguyên, quy tắc dấu ngoặc, quy tắc chuyển vế