Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dun Con
Xem chi tiết
Đặng Tuấn Anh
15 tháng 6 2018 lúc 21:30

\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)

\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)

=> Bằng nhau

Đinh quang hiệp
16 tháng 6 2018 lúc 8:36

\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)

\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)

\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)

Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:32

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

Minh Triều
Xem chi tiết
Edogawa Conan
30 tháng 12 2015 lúc 15:01

tick đi sau làm cho

t

Minh Triều
30 tháng 12 2015 lúc 15:02

Big hero 6 đáp án là > mà Mài hả bưởi

VŨ ĐỨC TÂM
30 tháng 12 2015 lúc 15:04

Không biết !

Anna Taylor
Xem chi tiết
alibaba nguyễn
15 tháng 10 2019 lúc 15:30

Ta có:

\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)

\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

Ta thấy rằng:

\(\sqrt{2018}>\sqrt{2016}\)

\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)

\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)

 DQN EDM
14 tháng 10 2019 lúc 22:04

bawngf nhau

Anna Taylor
14 tháng 10 2019 lúc 22:05

giải ra giùm mình với bạn -.-

Trần Thảo Mai Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 22:46

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)

nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

Nguyễn Thị Mát
Xem chi tiết
Nguyên Huỳnh
22 tháng 9 2019 lúc 8:51

sprt là gì

TDT AND WANNABLE
22 tháng 9 2019 lúc 8:53

bằng nhau. vì

= sqrt(2017-2016) =sqrt (1)

=sqrt(2016-2015) =sqrt (2)

từ (1) (2) => 2 cái đó bằng nhau.

đây là cách trình  bày nháp. khi bạn viết ra bài thì ghi  đề ra nha. CHÚC HỌC TỐT!

Kudo Shinichi
22 tháng 9 2019 lúc 9:03

\(\sqrt{2017}-\sqrt{2016}\) với \(\sqrt{2016}-\sqrt{2015}\)

Ta có : 

\(\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}\) \(=\frac{1}{\sqrt{2017}+\sqrt{2016}}< \frac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2016}-\sqrt{2015}=\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

Do đó :
\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Chúc bạn học tốt !!!

Nguyễn Việt Anh
Xem chi tiết
Đỗ Thị Dịu Hiền
Xem chi tiết
Nguyễn Ngọc Tho
Xem chi tiết
Nguyễn Thị Lệ
2 tháng 1 2018 lúc 17:59

theo em là A=B

em mới học lớp 5 thôi chưa chắc đúng đâu

2017=2017

2018 hơn 2016 là 2 đơn vị

2017 lớn hơn 2016 là 1 đơn vị

2017 lớn hơn 2016 1 đơn vị

A hơn B số đăn vị là:

2-(1+1)=0

Nên A=B

Nguyễn Ngọc Tho
2 tháng 1 2018 lúc 18:06

thanks em nha anh sẽ xem lại

Ai có kết quả nữa thì giúp mình nha

MT-Forever_Alone
23 tháng 4 2018 lúc 17:03

Nguyễn Thị lệ sai rồi. mk mới học lớp  nên cx ko biết làm nhưng đây không phải so sánh số như lớp 5.

không so sánh căn bậc 2 được như thế đâu.