1+[1+2]+[1+2+3]+[1+2+3+4]+...+[1+2+3+...+30]
Tính nhanh tổng?
giúp mình nha,thanks
Tính tổng sau: a) 1/2+1/6+1/12+1/20+1/30 b) 1/15+1/35+1/63+1/99+1/143 c) 1/6+1/12+1/20+1/30+1/42+1/56 d) 1/2+1/2^2+1/2^3+1/2^4+1/2^5 e) 1/7+1/7^2+1/7^3+...+1/7^100 f) 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/200*(1+2+3+..+200) g) (1/2+1)*(1/3+1)*(1/4+1)*..*(1/100+1) h) (1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/2022) Giúp mk vs ạkkk
a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)
b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)
=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).
d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).
e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)
Tính tổng
1*2+2*3+3*4+4*5++...+29*30
ai làm đúng và nhanh nhất mình sẽ tick cho hihihihiihih
Tính nhanh
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...........+\frac{1}{1+2+.....+30}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{30.31}\)
=\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{30.31}\right)\)
=2.\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{30}-\frac{1}{31}\right)\)
=\(2.\left(\frac{1}{2}-\frac{1}{31}\right)\)
=2.\(\frac{29}{62}\)
=\(\frac{29}{31}\)
Tính tổng nhanh
1/1*2+1/2*3+1/3*4+1/5*6
1/1*2+1/2*3+1/3*4+1/5*6
=1-1/2+1/2-1/3+1/3-1/4+1/5-1/6
=1-1/4+1/5-1/6
=47/60
\(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+\frac{1}{5}\cdot6\)
\(=2+\frac{3}{2}+\frac{4}{3}+\frac{6}{5}\)
\(=\frac{181}{30}\)
tính tổng
(-1)+2+(-3)+4+(-5)+6+......+(-99)+1000
b)2+2^2 +2^3+2^4+....+2^30
Các bạn làm nhanh dùm mk nha!
Tính nhanh :
1/2 + 2/4 + 3/6 + 4/8 + 5/10 + 6/12 =
1/3 + 1/4 + 1/5 + 8/10 + 20/15 + 20/30 =
`1/2+2/4+3/6+4/8+5/10+6/12`
`=1/2+1/2+1/2+1/2+1/2+1/2`
`=1/2*6=3`
`1/3+1/4+1/5+8/10+20/15+20/30`
`=(1/3+1/4)+(1/5+4/5)+(4/3+2/3)`
`=7/12+1+2`
`=7/12+3=43/12`
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\)
\(=\dfrac{1}{2}\times6=3\)
\(------\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{8}{10}+\dfrac{20}{15}+\dfrac{20}{30}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{5}+\dfrac{4}{3}+\dfrac{2}{3}\)
\(=\left(\dfrac{1}{3}+\dfrac{4}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)+\dfrac{1}{4}\)
\(=\dfrac{7}{3}+1+\dfrac{1}{4}\)
\(=\dfrac{28}{12}+\dfrac{12}{12}+\dfrac{3}{12}\)
\(=\dfrac{43}{12}\)
`=1/2+1/2+1/2+1/2+1/2+1/2= 1/2 \times 6=3`
`----`
`=1/3+1/4+1/5+4/5+4/3+2/3 =(4/3+2/3+)+(1/5+4/5)+1/3+1/4=2+1+1/3+1/4=3+1/3+1/4=43/12`
Bài 1: Biết rằng \(1^3+2^3+3^3+...+10^3=3025\). Tính tổng \(S=1^3+2^3+3^3+...+n^3\).
Bài 2: Biết rằng \(1^2+3^2+5^2+...+21^2=1771\). Tính tổng \(S=6^2+18^2+30^2+...+126^2\).
Bài 3: Biết rằng \(1^2+3^2+5^2+...+21^2=1771\). Tính tổng \(S=1^2+3^2+...+\left(2n-1\right)^2\).
Bài 4: Tính tổng \(A=\)\(\sqrt{2+\frac{1}{4}}+\sqrt{1+\frac{1}{4}+\frac{1}{9}}+\sqrt{1+\frac{1}{9}+\frac{1}{16}}+...+\sqrt{1+\frac{1}{43264}+\frac{1}{43681}}\)
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
Tính nhanh tổng sau: P= 1/2+1/2^2+1/2^3+1/2^4+.........1/2^n