tìm GTNN của biểu thức M = -x^2 + 10x - 25
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Tìm gtnn của biểu thức
B=-x^2+10x -5
B=-(x2-10x+25-20)=-[(x-5)2-20]=-(x-5)2+20 vậy GTLN là 20
sai đề nha bạn, tìm GTLN mới phải
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
Tìm GTLN của biểu thức:
-2x^2 - y^2 - 2xy + 4x + 2y + 2
Tìm GTNN của biểu thức:
x^2 - 4xy + 5y^2 + 10x - 22y + 27
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
Tìm GTNN của các biểu thức sau:
a)A=x^2+y^2+x-y-2xy+1
b)B=\(\dfrac{7}{10x-x^2-30}\)
\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)
\(B=\dfrac{7}{-\left(x-5\right)^2-5}\ge-\dfrac{7}{5}\)
\(B_{min}=-\dfrac{7}{5}\) khi \(x=5\)
Tìm GTNN của biểu thức
P = x2 - 10x + 22 / ( x-3)2 với x khác 3
Các bạn giúp mình vs, mình đang cần gấp
Ta có : \(P=\frac{x^2-10x+22}{\left(x-3\right)^2}\)
Đặt : \(x-3=y\Leftrightarrow x=y+3\)
\(P=\frac{\left(y+3\right)^2-10\left(y+3\right)+22}{y^2}\)
\(P=\frac{y^2+6y+9-10y-30+22}{y^2}\)
\(P=\frac{y^2-4y+1}{y^2}\)
\(P=\frac{y^2}{y^2}-\frac{4y}{y^2}+\frac{1}{y^2}\)
\(P=1-\frac{4}{y}+\frac{1}{y^2}\)
\(P=\left(\frac{1}{y^2}-\frac{4}{y}+4\right)-3\)
\(P=\left(\frac{1}{y}-2\right)^2-3\)
Mà \(\left(\frac{1}{y}-2\right)^2\ge0\forall y\)
\(\Rightarrow P\ge-3\)
Dấu "=" xảy ra khi :
\(\frac{1}{y}-2=0\Leftrightarrow\frac{1}{y}=2\Leftrightarrow y=\frac{1}{2}\)
Lại có : \(x=y+3\)
\(\Rightarrow x=\frac{7}{2}\)
Vậy \(P_{Min}=-3\Leftrightarrow x=\frac{7}{2}\)
tìm GTNN của biểu thức
D=x2-4xy+5y2+10x-22y+28
x=?
D=(x2 - 4xy + 4y2) +(y2 - 22y + 121) - 93
= (x-2y)2 + (y-11)2 - 93
Vì (x-2y)2 và (y-11)2 luôn lớn hơn 0 nên GTNN của biểu thức là -93
Khi đó y=11
và x=22
Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Tìm GTNN của biểu thức:
\(C=x^2-4xy+5y^2+10x-22y+28\)