Những câu hỏi liên quan
Dương
Xem chi tiết
Kiệt Nguyễn
13 tháng 3 2021 lúc 7:36

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Cầm Dương
Xem chi tiết
Lê Chí Công
13 tháng 6 2017 lúc 16:49

\(\frac{1}{\sqrt{xy}}\)<=  {\(\frac{1}{x}\)+\(\frac{1}{y}\)}  : 2 

Tương tư.....

=> DPCM

Bình luận (0)
Oo Bản tình ca ác quỷ oO
Xem chi tiết
anhduc1501
18 tháng 7 2017 lúc 22:39

\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)

Bình luận (0)
tống thị quỳnh
Xem chi tiết
Trần Hữu Ngọc Minh
24 tháng 12 2017 lúc 22:32

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

Bình luận (0)
Trần Hữu Ngọc Minh
24 tháng 12 2017 lúc 22:27

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

Bình luận (0)
dbrby
Xem chi tiết
Hàn Thiên Băng
Xem chi tiết
Akai Haruma
28 tháng 5 2019 lúc 0:23

Lời giải:

Ta có:

\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

Hoàn toàn tương tự:

\(y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)\)

Do đó:

\(\text{VT}=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=\frac{1}{(x+y)(x+z)}+\frac{1}{(y+z)(y+x)}+\frac{1}{(z+x)(z+y)}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(*)\)

----------------------------------------------------

\(\text{VP}=\frac{2}{3}\left(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\right)^3=\frac{2}{3}\left(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+x)(y+z)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\right)^3\)

\(=\frac{2}{3}.\frac{(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3}{\sqrt{(x+y)(y+z)(x+z)}^3}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^2\leq (x+y+z)(xy+xz+yx+yz+zx+zy)=2(x+y+z)\)

\(\Rightarrow (x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3\leq \sqrt{2(x+y+z)}^3(2)\)

\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\geq (x+y+z)(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}\) (AM-GM)

\(=\frac{8}{9}(x+y+z)(xy+yz+xz)=\frac{8}{9}(x+y+z)\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}^3\geq (x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VP}\leq \frac{2}{3}.\frac{\sqrt{2(x+y+z)}^3}{(x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq \text{VP}\). Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (2)
Nguyễn Huy Thắng
28 tháng 5 2019 lúc 15:00

len mang ma xem giai

Bình luận (0)
Matsumi
Xem chi tiết
Sách Giáo Khoa
24 tháng 3 2020 lúc 8:32

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Phương Nga
Xem chi tiết
Kudo Shinichi
5 tháng 11 2019 lúc 16:22

Áp dụng bất đẳng thức Cauchy 

\(1+x^3+y^3\ge3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự :
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\frac{3}{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\sqrt{\frac{3}{xz}}\)

Cộng theo vế các bất đẳng thức và thu lại ta được :
\(VT\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\ge3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\)

( Cauchy )

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Tuấn Đạt
6 tháng 11 2019 lúc 22:56

Cách khác nè bạn

Xét bđt phụ \(a^3+b^3\ge ab\left(a+b\right)\left(a,b>0\right)\)

Thật vậy\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)

Áp dụng ta có \(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{xy}\sqrt{x+y+z}}{xy}=\sqrt{\frac{x+y+z}{xy}}\)

T tự ta có:\(VT\ge\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}+\frac{1}{xy}\right)=\sqrt{x+y+z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\left(xyz=1\left(gt\right)\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Võ Tâm Đan
Xem chi tiết
Phạm Thành Đông
7 tháng 3 2021 lúc 20:58

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Thành Đông
7 tháng 3 2021 lúc 21:03

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Huy Tú
7 tháng 3 2021 lúc 21:31

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{x+\sqrt{yz}}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

Tượng tự ta có : \(\frac{y^2}{y+\sqrt{xz}}+\frac{y+\sqrt{xz}}{4}\ge y\)

\(\frac{z^2}{z+\sqrt{xy}}+\frac{z+\sqrt{xy}}{4}\ge z\)

Cộng vế với vế của BĐT ta được : 

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}+\frac{x+\sqrt{yz}}{4}+\frac{y+\sqrt{xz}}{4}+\frac{z+\sqrt{xy}}{4}\ge x+y+z\)

\(VT\ge x+y+z-\frac{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{4}\)

mà \(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(VT\ge\frac{4\left(x+y+z\right)-2\left(x+y+z\right)}{4}=\frac{2\left(x+y+z\right)}{4}\)

mà \(x+y+z\ge3\)hay \(VT\ge=\frac{6}{4}=\frac{3}{2}\)

Dấu ''='' xảy ra <=> x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa