Cho hcn ABCD có AB =2AD và AC = \(4\sqrt{5}\)
Vẽ AH vuông góc BD . Tính CH
cho hcn ABCD có AB=8cm ; BC=6cm vẽ AH vuông góc với BD ( H thuộc BD )
a, tính độ dài đường chéo BD của hcn
b, tính độ dài đoạn AH
c, CMR AH^2 =AD.HB
a: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: AH=6*8/10=4,8cm
Cho hcnhật ABCD có AB=2AD. Vẽ AH vuông góc BD. Vẽ E là điểm đối xứng của A qua H.
a) C/m AE2 = 4HD.HB
b) C/m góc DEA = góc ABD
Cho hình chữ nhật ABCD có AB=2AD. Vẽ BH vuông góc với AC. Gọi M,N,E lần lượt là trung điểm của AH, BH,CD. Cho AB=8cm. Tính diện tích ABED
Cho HCN ABCD có AB = 5cm, BC = 12cm. Vẽ BH vuông góc vs AC tại H và kéo dài cắt AD tại K.
a) Giải ∆ABC
b) Đường phân giác của góc ABC cắt AC tại M. Tính BM.
c) Chứng minh: AH × AC = BK × BH.
a: Xét ΔABC vuông tại B có \(AC^2=BA^2+BC^2\)
=>\(AC^2=5^2+12^2=169\)
=>AC=13(cm)
Xét ΔABC vuông tại B có \(sinACB=\dfrac{AB}{AC}=\dfrac{5}{13}\)
=>\(\widehat{ACB}\simeq23^0\)
\(\Leftrightarrow\widehat{BAC}=90^0-\widehat{ACB}=67^0\)
b: Xét ΔBAC có BM là phân giác
nên \(BM=\dfrac{2\cdot BA\cdot BC}{BA+BC}\cdot cos\left(\dfrac{\widehat{ABC}}{2}\right)\)
\(=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{17}\left(cm\right)\)
c: Xét ΔABK vuông tại A có AH là đường cao
nên \(BH\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BK=AH\cdot AC\)
Cho hình chóp SABCD có đáy ABCD là hcn. E là điểm trên cạnh AD sao cho BE vuông góc vs AC tại H và AB > AE. 2 mp (SAC) và (SBE) cùng vuông góc vs mp (ABCD). Góc tạo bởi SB và mp(SAC) = 30. Cho AH= \(\frac{2a\sqrt{5}}{5}\), BE=\(a\sqrt{5}\) . Tính thể tích khối SABCD và khoảng cách giữa SB,CD
ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF
kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)
\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)
(SAB) chứa SB và song song CD
\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))
có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)
\(\Rightarrow CM=5HK=a\sqrt{15}\)
Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)
\(\begin{cases}\left(SAC\right)\perp\left(ABCD\right)\\\left(SBE\right)\perp\left(ABCD\right)\\\left(SBE\right)\cap\left(SAC\right)=SH\end{cases}\) \(\Rightarrow SH\perp\left(ABCD\right)\)
\(\begin{cases}BE\perp SH\left(SH\perp\left(ABCD\right)\right)\\BE\perp AC\end{cases}\) \(\Rightarrow BE\perp\left(SAC\right)\)
vậy SH là hình chiếu của SB lên (SAC) . vậy \(\widehat{BSH}=30^o\)
đặt AB=x
ta có : \(AE=\sqrt{BE^2-AB^2}=\sqrt{5a^2-x^2}\)
lại có : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}\Leftrightarrow\frac{5}{4a^2}=\frac{1}{x^2}+\frac{1}{5a^2-x^2}\Leftrightarrow x^4-5a^2x^2+a^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=a^2\\x^2=4a^2\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=a\\x=2a\end{array}\right.\) . loại x=a vì AE=2a>a=AB
Vậy AB=2a
\(BH=\sqrt{AB^2-AH^2}=\frac{4a}{\sqrt{5}}\)
\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}\Leftrightarrow\frac{5}{16a^2}=\frac{1}{4a^2}+\frac{1}{BC^2}\Leftrightarrow BC=4a\)
\(S_{ABCD}=AB.BC=8a^2\)
Tam giác SBH vuông tại H nên \(SH=BH.\cot\widehat{BSH}=\frac{4a}{\sqrt{5}}.\sqrt{3}=\frac{4a\sqrt{15}}{5}\)
\(V_{SABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{4a\sqrt{15}}{5}.8a^2=\frac{32a^3\sqrt{15}}{15}\)
bài 1: CHo hình thang vuông ABCD có hai đường chéo Ac và BD vuông góc với nhau tại H. biết HD= 18cm, HB= 8cm. Tính diện tích hình thang ABCD
bài 2:Cho tam giác vuông ABC vuông tại A, đường cao Ah. tính độ dài các đoạn thắng BH,AH,AC nếu biết
a, AB=12cm, Ch=12,8cm
b, AB=4 cm, Ch=2/2 cm
cho hình thoi ABCD, có AC=6cm và BD=8cm. Vẽ đường AH vuông góc với BC. tính AH ?
bạn sai roi phai ap dung dinh ly ty-ta-go
bài 1 cho tam giác ABC vuông tại A, có AB = 15 cm ;AC = 20cm và đường cao AH. Tính độ dài đoạn thẳng BC và AH
bài 2 cho tam giác ABC vuông tại AH,có AB =15cm,AH=12cm.Tính BH,BC,CH,AC
bài 3 cho tứ giác lồi ABCD có AC vuông góc vs BD tại O.Chứng minh AB2 + CD2 = AD2+ BC2.
giải giúp mình trong hôm nay với
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
cho hình chũ nhật ABCD có AB=2AD=5cm . Kẻ AH vuông góc với AC. Gọi M,N,P lần lượt là trung điểm AH,BH,CD .
a, Tính độ dài của AC,MN
2AD=5cm
=>\(AD=\dfrac{5}{2}=2,5\left(cm\right)\)
ABCD là hình chữ nhật
=>\(AC^2=AB^2+AD^2\)
=>\(AC^2=5^2+2,5^2=31,25\)
=>\(AC=\sqrt{31,25}=\dfrac{5\sqrt{5}}{2}\left(cm\right)\)
Xét ΔHAB có M,N lần lượt là trung điểm của HA,HB
=>MN là đường trung bình của ΔHAB
=>\(MN=\dfrac{AB}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)