Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hanh Ho

Cho hình chóp SABCD có đáy ABCD là hcn. E là điểm trên cạnh AD sao cho BE vuông góc vs AC tại H và AB > AE. 2 mp (SAC) và (SBE) cùng vuông góc vs mp (ABCD). Góc tạo bởi SB và mp(SAC) = 30. Cho AH= \(\frac{2a\sqrt{5}}{5}\), BE=\(a\sqrt{5}\) . Tính thể tích khối SABCD và khoảng cách giữa SB,CD

Hồng Trinh
21 tháng 5 2016 lúc 22:44

ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF

kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)

\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)

(SAB) chứa SB và song song CD

\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))

có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)

\(\Rightarrow CM=5HK=a\sqrt{15}\)

Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)

Hồng Trinh
21 tháng 5 2016 lúc 22:52

S D C B A F H E K

Hồng Trinh
21 tháng 5 2016 lúc 22:37

\(\begin{cases}\left(SAC\right)\perp\left(ABCD\right)\\\left(SBE\right)\perp\left(ABCD\right)\\\left(SBE\right)\cap\left(SAC\right)=SH\end{cases}\) \(\Rightarrow SH\perp\left(ABCD\right)\)

\(\begin{cases}BE\perp SH\left(SH\perp\left(ABCD\right)\right)\\BE\perp AC\end{cases}\) \(\Rightarrow BE\perp\left(SAC\right)\)

vậy SH là hình chiếu của SB lên (SAC) . vậy \(\widehat{BSH}=30^o\)

đặt AB=x

ta có : \(AE=\sqrt{BE^2-AB^2}=\sqrt{5a^2-x^2}\)

lại có : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}\Leftrightarrow\frac{5}{4a^2}=\frac{1}{x^2}+\frac{1}{5a^2-x^2}\Leftrightarrow x^4-5a^2x^2+a^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=a^2\\x^2=4a^2\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=a\\x=2a\end{array}\right.\) . loại x=a vì AE=2a>a=AB

Vậy AB=2a

\(BH=\sqrt{AB^2-AH^2}=\frac{4a}{\sqrt{5}}\) 

\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}\Leftrightarrow\frac{5}{16a^2}=\frac{1}{4a^2}+\frac{1}{BC^2}\Leftrightarrow BC=4a\)

\(S_{ABCD}=AB.BC=8a^2\)

Tam giác SBH vuông tại H nên \(SH=BH.\cot\widehat{BSH}=\frac{4a}{\sqrt{5}}.\sqrt{3}=\frac{4a\sqrt{15}}{5}\)

\(V_{SABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{4a\sqrt{15}}{5}.8a^2=\frac{32a^3\sqrt{15}}{15}\)

Huỳnh Ngọc Gia Linh
21 tháng 5 2016 lúc 22:16

rất tiếc em hok giúp gì được cho chị

em lớp 6

 


Các câu hỏi tương tự
Đào Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Mai Khánh Huyề...
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Hanh Ho
Xem chi tiết
lê thị thu giang
Xem chi tiết
Hoàn
Xem chi tiết
Phan Nhật Linh
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Trang Võ Thị
Xem chi tiết