Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Phương Anh

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB=a;BC=a\sqrt{3}\), H là trung điểm của cạnh AB. Biết 2 mặt phẳng (SHC) và (SHD) cùng vuông góc với mặt phẳng (ABCD), đường thẳng SD tạo với mặt đáy góc 60 độ. Tính thể tích khối chóp và khoảng cách giữa 2 đường thẳng AC và SB.

Nguyễn Tiến Mạnh
7 tháng 4 2016 lúc 9:37

Ta có \(\left(SHC\right)\cap\left(SHD\right)=SH\)

Từ giả thiết \(\left(SHC\right)\perp\left(ABCD\right);\left(SHD\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

                \(\Leftrightarrow V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}AB.AD.SH=\frac{1}{3}a^2\sqrt{3}.SH\left(1\right)\)

Ta có \(SH\perp\left(ABCD\right)\Rightarrow HD\) là hình chiếu của SD trên (ABCD), suy ra góc giữa SD và (ABCD) là \(\widehat{SDH}=60^0\Rightarrow SH=HD\tan\widehat{SDHH}=\frac{a\sqrt{39}}{2}\)

Khi đó \(V_{S.ABCD}=\frac{1}{2}a^3\sqrt{13}\)

Dựng hình bình hành ACBE. Khi đó AC//BE suy ra AC//(SBE)

\(\Rightarrow d\left(AC,SB\right)=d\left(AC,\left(SBE\right)\right)=d\left(A,\left(SBE\right)\right)=2d\left(H,\left(SBE\right)\right)\)

Gọi K, I lần lượt là hình chiếu của H trên BE và SK.

Khi đó \(BE\perp KH,BE\perp SH\Rightarrow BE\perp HI\left(1\right)\)

Mặt khác \(HI\perp SK\left(2\right)\)

Từ (1) và (2) suy ra \(HI\perp\left(SBE\right)\Rightarrow d\left(H,\left(SBE\right)\right)=HI\)

Tính được \(HK=\frac{a\sqrt{3}}{4};HI=\frac{a\sqrt{39}}{\sqrt{212}}\)

\(\Rightarrow d\left(AC,SB\right)=2d\left(H,\left(SBE\right)\right)=2HI=\frac{a\sqrt{39}}{\sqrt{53}}=\frac{a\sqrt{2067}}{53}\)

Vũ Trà My
27 tháng 9 2017 lúc 19:31

Ý C

Thu Huyền Dương
27 tháng 12 2017 lúc 9:51

Thuận ThiênThiên????

lolang


Các câu hỏi tương tự
Nguyễn Hồng Phương Khôi
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Nguyễn Bảo Trân
Xem chi tiết
Trần Khánh Vân
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Vũ Trịnh Hoài Nam
Xem chi tiết
Lại Thị Hồng Liên
Xem chi tiết
Dao Nguyen
Xem chi tiết