Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bảo Trân

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB, AD. H là giao điểm của N và DM. Biết  SH vuông góc với mặt phẳng (ABCD) và \(SH=a\sqrt{3}\). Tính thể tích của khối chóp S.CDNM và khoảng cách giữa 2 đường thẳng DM và SC theo a

Đặng Minh Quân
31 tháng 3 2016 lúc 13:25

S A B C D M N H K

Thế tích của khối chóp S.CDNM :

\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)

             \(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)

             \(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)

Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)

Khoảng cách giữa 2 đường thẳng DM và SC

\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\) 

Kết hợp với điều kiện :

\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)

Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC

Do đó :

\(d\left(DM,SC\right)=HK\)

Ta có :

\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)

\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)

Phuong Thao
19 tháng 4 2016 lúc 23:43

cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC

cảm ơn c nhiều nhiều.


Các câu hỏi tương tự
Phạm Thị Thúy Giang
Xem chi tiết
Trung Sơn
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Dao Nguyen
Xem chi tiết
Trần Phong
Xem chi tiết
Vũ Trịnh Hoài Nam
Xem chi tiết
Phạm Thị Phương Thanh
Xem chi tiết
anhduc1501
Xem chi tiết