giải pt (pp đặt ẩn phụ)
`(x^2 -6x)^2 +13(x-3)^2 -77=0`
Giải pt sau: (đặt ẩn phụ)
\(x^4\)-\(2x^2\)-144x-1295=0
=>x^4+2x^2+1-4x^2-144x-1296=0
=>(x^2+1)^2-(2x+36)^2=0
=>(x^2+1-2x-36)(x^2+1+2x+36)=0
=>x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
Giải pt theo cách đặt ẩn phụ
\(\left(x+4\right)^2-6\sqrt{x^3+3x}=13\)
Giải PT
a)\(8x^2-8x+3=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
b)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
c)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
GIẢI = CÁCH ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:
\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)
\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)
c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)
xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)
\(f\left(t\right)=2t+2>0\)
\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)
Tự lm nốt nhé @tran huu dinh
giải hpt = pp đặt ẩn phụ
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
Giải PT (đặt ẩn phụ)
x4 - 3x3 + 9x2 - 3x + 1 = 0
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
pt trở thành: \(t^2-2-3t+9=0\)
\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
Giải pt bằng phương pháp đặt ẩn phụ
(5/x^2 -4x+5)-x^2+4x-1=0
Giải pt sau (bằng 3 cách TẠO LŨY THỪA DƯỚI DẤU CĂN, ĐẶT ẨN PHỤ, DÙNG BĐT): \(x^2+6x-3=4x\sqrt{2x-1}\)
\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\) ĐK: \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a\ge0\)
\(\Rightarrow6x-3=3a^2\)
=> (1) <=> x^2 +3a^2 = 4ax
<=> x^2 -4ax +3a^2 =0
<=> x^2 -ax - 3ax + 3a^2 =0
<=> x(x-a) -3a(x-a) =0
<=> (x-a) ( x-3a ) =0
\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)
TH1: x=a
\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)
\(\Leftrightarrow x^2=2x-1\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x=1 (tm)
TH2: x= 3a
\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=18x-9\)
\(\Leftrightarrow x^2-18x+9=0\)
\(\Delta=288\)
=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)
Vậy ...
`4(x^2 +11x+30)(x^2 +22x+120)=3x^2`
giải pt bằng đặt ẩn phụ
Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.
giải pt bằng cách đặt ẩn phụ:
5.căn(2x^3+16)=2(x^2+8)
\(5\sqrt{2x^3+16}=2\left(x^2+8\right)\left(x>-2\right)\)
\(\Leftrightarrow20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2+8\right)\)
\(\Leftrightarrow2\left(x^2+8\right)-20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=0\)
\(\Leftrightarrow x^2+8-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)
\(\Leftrightarrow x^2-2x+4+2x+4-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)
Đặt a = \(\sqrt{x^2-2x+4}\left(a>0\right)\)
b = \(\sqrt{x+2}\left(b\ge0\right)\)
=> pt có dạng:
\(a^2-10ab+b^2=0\)
bạn phân tích rồi làm tiếp nhá