Rút gọn biểu thức
A = 2024 * 2022 - 4048/2020 * 2024 + 4040
Giải giúp shii đi shii tick cho uy tín lun đúng hay sai k bt :33
So sánh:
2022/2021*2023 ... 2021/2022*2022
Làm giúp shii đi shii tick cho uy tín lun đúng hay sai k bt :33
Không cần tính, ta thấy : 2022/2021 > 2021/2022
Vậy : 2022/2021*2023 > 2021/2022*2022
Tính:
8/13 + 4/9 - 5/13 + 5/9 - 3/13
Giải giúp shii đi shii tick choa :>
\(\dfrac{8}{13}\) + \(\dfrac{4}{9}\) - \(\dfrac{5}{13}\) + \(\dfrac{5}{9}\) - \(\dfrac{3}{13}\)
= (\(\dfrac{8}{13}\) - \(\dfrac{5}{13}\) - \(\dfrac{3}{13}\)) + ( \(\dfrac{4}{9}\) + \(\dfrac{5}{9}\))
= \(\dfrac{8-5-3}{13}\) + \(\dfrac{9}{9}\)
= 0 + 1
= 1
8/13 + 4/9 - 5/13 + 5/9 - 3/13
=(8/13 - 5/13 - 3/13) + (4/9 + 5/9)
=(8 - 5 - 3) : 13 + 9/9
= 0 + 1
= 1
trong các cách rút gọn sau đây cách rút gọn nào là đúng đối với S=1+3 mũ 2+3 mũ 4+...+3 mũ 2022
a:3 mũ 2024:2+1 b:3 mũ 2024+1:2 c: 3 mũ 2022:2+1 d: không đáp án nào đúng
\(S=1+3^2+3^4+...+3^{2022}\)
\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)
\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)
d, không đáp án nào đúng
Lời giải:
$S=1+3^2+3^4+....+3^{2022}$
$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$
$\Rightarrow 9S-S=3^{2024}-1$
$\Rightarrow S=\frac{3^{2024}-1}{8}$
Đáp án D.
\(P\left(x\right)\)=\(x^{2023}-2024.x^{2022}+2024.x^{2021}-2024.x^{2020}+.....+2024.x-1\)
tính P ( 2023)
Giải nhanh giúp mik ạ !! đang cânf gấp O(∩_∩)O
Với x = 2023
<=> x + 1 = 2024
Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1
= x2023 - x2023 - x2022 + .. + x2 + x - 1
= x - 1 = 2023 - 1 = 2022
so sánh 2020/2022 + 2022/2024 và 2020+2022/2022+2024
2020/2022 > 2020/2022+2024 (1)
2022/2024 > 2022/2022+2024 (2)
từ (1) và (2) cộng vế theo vế ta có :
2020/2022 + 2022/2024 > 2020/2022+2024 + 2022/2022+2024
=> 2020/2022 + 2022/2024 > 2020+2022/2022+2024
tìm giá trị lớn nhất của biểu thức A=|2020-x|+|2022-x|+|2024-x|
Giúp mình với!!!
So sánh A=\(\dfrac{2024^{2023}+1}{2024^{2024}+1}\) và B=\(\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
Cám ơn các bạn!
\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)
\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
Vì \(2024>2023=>2024^{2024}>2024^{2023}\)
\(=>2024^{2024}+1>2024^{2023}+1\)
\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)
\(=>A< B\)
\(#PaooNqoccc\)
Rút gọn các phân số sau bằng ƯCLN:
6262/-6666;-2020/2024
tìm GTNN của \(P=|x-2020|+|x-2022|+|x-2024|\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$
$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$
$\Rightarrow P\geq 4$
Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$
Hay $x=2022$