chứng minh rằng \(\forall\varepsilon N,thi\)
a) 24n+1+3\(⋮5\)
b) 74n - 1\(⋮5\)
chung minh rang moi so n de: a) 74n - 1 chia het cho 5
b) 34n + 1 + 2 chia het cho 5
c) 24n + 1 + 3 chia het cho 5
d) 92n + 1 + 1 chia het cho 10
viết lại đề cho chuẩn
nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...
a)
\(74^n-1\) đề sai vơi n lẻ không chia hết cho 5 xem lại và viết cho chuẩn đi
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh rằng:\(n^2-13n⋮6,\forall n\varepsilon Z\)
bạn ơi hình như đề phải là n3-13n
Câu trả lời hay nhất: Đặt n² - n + 13 = k²
<--> 4n² - 4n + 52 = 4k²
<--> (4n² - 4n + 1) + 51 = 4k²
<--> (2n - 1)² + 51 = 4k²
<--> 4k² - (2n - 1)^2 = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51
<--> (2k - 2n + 1)(2k + 2n - 1) = 51.1
Vì 2k - 2n + 1 và 2k + 2n - 1 là những số nguyên nên:
{2k - 2n + 1 = 51
{2k + 2n - 1 = 1
hoặc:
{2k - 2n + 1 = - 51
{2k + 2n - 1 = - 1
Giải các hệ PT trên ta tìm được k và n (cần tìm)
CMR:
a)74n-1 chia hết cho 5
b)34n+1+2 chia hết cho 5
c)92n+1+1 chia hết cho 10
d)24n+2+1 chia hết cho 5
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
Chứng minh rằng các số sau là các SNT cùng nhau
a) n+5 , n+6
b) 2n+3 và n+2
c) 16n+5 ,24n+7
d) 2n + 3 , 4n+8
Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)
\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\in\) N* => d = 1
=> ƯCLN(n + 5; n + 6) = 1
=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)
c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)
\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)
\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(16n + 5; 24n + 7) = 1
=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Cho n \(\varepsilon\)Z. Chứng minh rằng : n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.
Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)
Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3
=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6
Ta có:
n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)
Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2
Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3
=> n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.
Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.
Chứng minh rằng: C = (n2 + 2n + 5)3 - (n - 1)2 + 2018 ⋮ 6 ∀ n ∈ Z.
Chứng minh rằng:
a) 4n +15n - 1 chia hết cho 9
b) 32n+3 - 24n + 37 chia hết cho 64
c) 2n+2 x 3n + 5n -4 chia hết cho 25