Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyển Trọng Đức Quý
Xem chi tiết
Cukak
Xem chi tiết
Nguyen My Van
26 tháng 5 2022 lúc 10:46

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow x=z=\dfrac{5}{3}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

Đỗ Tuệ Lâm
26 tháng 5 2022 lúc 10:49

Từ đề suy ra :

\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=\pm1\end{matrix}\right.\)

 

Lisaki Nene
Xem chi tiết
Nguyệt
5 tháng 7 2018 lúc 22:30

thiếu đề bnj ơi

Nguyệt
5 tháng 7 2018 lúc 22:31

https://olm.vn/hoi-dap/question/925051.html

bn vào link này có bài bạn caamnf đo. mà đề (3x-5)2006+(y2-1)2008+(x-z)2100=0

Nguyệt
5 tháng 7 2018 lúc 22:31

đề bài là: (3x-5)2006+(y2-1)2008+(x-z)2100=0 nha 

Xem chi tiết
Nhật Hạ
17 tháng 8 2019 lúc 17:17

Vì \(\left(3x-5\right)^{2006}\ge0\) ; \(\left(y^2-1\right)^{2008}\ge0\) ; \(\left(x-z\right)^{2100}\ge0\)

\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\z=\frac{5}{3}\end{cases}}\)<=> x = z = 5/3 và y = 1 hoặc y = -1

Vậy....

Hoàng Ninh
17 tháng 8 2019 lúc 19:23

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Ta có:

\(\hept{\begin{cases}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{cases}}\)

\(\Leftrightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

Vây khi x = \(\frac{5}{3}\); y = \(\pm1\), z = \(\frac{5}{3}\)thì biểu thức trên có giá trị bằng 0.

Chúc em học tốt nhé!!!

Shinnôsuke
Xem chi tiết
Mai Ngọc
22 tháng 2 2016 lúc 20:06

Ta có: (3x-5)2006 lớn hơn hoặc = 0 với mọi x

(y2-1)2008 lớn hơn hoặc = 0 vs moi y

(x-z)2100 lớn hơn hoặc = 0 vs mọi x, z

=> (3x-5)2006+(y2-1)2008+(x-z)2100 lớn hơn howacj = 0 vs mọi x

mà (3x-5)2006+(y2-1)2008+(x-z)2100=0

=> (3x-5)2006=0 ; (y2-1)2008=0 và (x-z)2100=0

+) xét (3x-5)2006=0

=>3x-5=0

=>3x=5

=>x=5/3

+) xét (y2-1)2008=0

=>y2-1=0

=>y2=1

=>y=-1 hoặc y=1

+) xét (x-z)2100=0

=>x-z=0

=>5/3-z=0

=>z=5/3

Devil
22 tháng 2 2016 lúc 20:06

(3x-5)^2006>/0;(y^2-1)^2008>/0;(x-z)^2100>/0

để (3x-5)^2006+(y^2-1)^2008+(x-z)^2100=0 thì 3x-5=y^2-1=x

để 3x-5=0 thì 3x=5 suy ra x=5/3

    y2-1=0 thì y2=1 suy ra y= cộng trừ1

    x-z=0 thì z=x=5/3

The darksied
Xem chi tiết
Đỗ Thị Thanh Lương
1 tháng 5 2017 lúc 13:39

Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x

           \(\left(y^2-1\right)^{2008}\ge0\)với mọi y

           \(\left(x-z\right)^{2100}\ge0\) với mọi x,z

\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x

Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)

Xét:

\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)

Xét:

\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)

Xét:

\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Tiến Dũng Đinh
1 tháng 5 2017 lúc 13:37

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)

Tiến Dũng Đinh
1 tháng 5 2017 lúc 14:10

úi! y=1 hoặc y=-1 nha

@@ 

Nguyễn Anh Tú
Xem chi tiết
Seu Vuon
23 tháng 2 2015 lúc 8:02

c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1

TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1 

Hiền Ngố
23 tháng 2 2015 lúc 10:02

a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0 

3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7

Thuy Khuat
Xem chi tiết
Giang
27 tháng 10 2017 lúc 22:02

Ta có:

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\pm1\\z=\dfrac{5}{3}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

Hà Nguyễn
Xem chi tiết
Ai Bảo Cứng Đầu
12 tháng 2 2016 lúc 8:53

=>3x-5=0 và y2-1=0 và x-z=0

=>x=5/3 và y=-1 hoặc y=1 và z=5/3