5x + \(7\sqrt{xy}-6y+\sqrt{x}+2\sqrt{y}
phan tich thanh nhan tu
phan tich da thuc thanh nhan tu
5x+ 7$\sqrt xy $ -6y+$\sqrt x $ - 2$\sqrt y $
3.phan tich da thuc thanh nhan tu:
a.\(1+\sqrt{a}+\sqrt{b}+\sqrt{ab}\)
b.\(\sqrt{x}+\sqrt{y}+\sqrt{x^2y}+\sqrt{xy^2}\)
\(\left(1+\sqrt{a}\right)+\left(\sqrt{b}+\sqrt{ab}\right)=\left(1+\sqrt{a}\right)+\sqrt{b}\left(1+\sqrt{a}\right)=\left(1+\sqrt{a}\right)\left(1+\sqrt{b}\right)\)
\(b\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)\)
phan tich da thuc sau thanh nhan tu \(y-5x\sqrt{y}+6x^2\)
\(y-2x\sqrt{y}-3x\sqrt{y}+6x^2=\sqrt{y}\left(\sqrt{y}-2x\right)-3x\left(\sqrt{y}-2x\right)=\left(\sqrt{y}-3x\right)\left(\sqrt{y}-2x\right)\)
\(Timx,biet:\sqrt{X-5}=1+\sqrt{X}\) \(b,\sqrt{3-x}+\sqrt{x-5}=10\) \(Phan-tich-thanh-nhan-tu\) : \(x-2\sqrt{xy}+xy,,,\)
\(\sqrt[3]{x+6}+\sqrt{x-1}+1-x^2\)Phan tich thanh nhan tu
phan tich thanh nhan tu \(x\sqrt{x}-3x+4\sqrt{x}-2\) voi x>0
\(\sqrt{x}=a;a>0\Leftrightarrow A=a^3-3a^2+4a-2\)
\(\Leftrightarrow A=\left(a^3-3a^2+3a-1\right)+\left(a-1\right)\)
\(\Leftrightarrow A=\left(a-1\right)^3+\left(a-1\right)\)
\(A=\left(a-1\right)\left[\left(a-1\right)^2+1\right]\)
\(A=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)
\(7\sqrt{ab}+7b-\sqrt{a-}\sqrt{b}\)
phan tich da thuc thanh nhan tu
\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\) =\(7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\) =\(\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)
Phan tich da thuc thanh nhan tu
\(x+3\sqrt{x}+2\)
\(2x+\sqrt{x}-3\)
\(x+\sqrt{x}+2\sqrt{x}+2\)
= \(\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
= \(\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\)
\(2x-2\sqrt{x}+3\sqrt{x}-3\)
= \(2\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\)
= \(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
phan tich da thuc thanh nhan tu a, (3x+1)^2-(x+1)^2
b, 6x-6y-x^2+xy
\(a,\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(b,6x-6y-x^2+xy\)
\(=\left(6x-6y\right)-\left(x^2-xy\right)\)
\(=6\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(6-x\right)\)