ΔABC vuông tại A, AD phân giác, AH đường cao, BD = 15cm, CD = 20cm
Tính BH, HC?
ΔABC vuông tại A, AD phân giác, AH đường cao, BD = 15cm, CD = 20cm
Tính BH, HC?
BC=BD+CD=35cm
Xét ΔABC có AD là phân giác
nên AB/AC=BD/CD=3/4
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16
mà BH+CH=35
nên \(\dfrac{BH}{9}=\dfrac{CH}{16}=\dfrac{BH+CH}{9+16}=\dfrac{35}{25}=1.4\)
=>BH=12,6cm; CH=22,4cm
cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. biết BD=15cm, CD= 20cm.tính BH,HC
Xét ΔABC có AD là đường phân giác
nên AB/AC=BD/CD=15/20=3/4
=>HB/HC=9/16
=>HB=9/16HC
Ta có: HB+HC=BC
=>9/16HC+HC=25
=>HC=16(cm)
=>HB=9(cm)
Bài 2.Cho tam giác ABC vuông ở A, phân giác AD đường cao AH. Biết BD = 15cm, CD = 20cm. Tính độdài các đoạn thẳng BH, HC.
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow BH=\dfrac{9}{16}CH\)
Ta có: BH+CH=35
\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow CH=22.4\left(cm\right)\)
\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)
cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD=15cm, CD=20cm. Tính BH,CH?
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính BH,CH
\(BC=BD+CD=15+20=35\left(cm\right)\)
Xét tam giác \(ABC\)phân giác \(AD\):
\(\frac{AB}{BD}=\frac{AC}{CD}\)(tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow AB=\frac{3}{4}AC\).
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Leftrightarrow35^2=\left(\frac{3}{4}AC\right)^2+AC^2\Leftrightarrow AC^2=784\Leftrightarrow AC=28\left(cm\right)\)
\(AC^2=CH.BC\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{28^2}{35}=22,4\left(cm\right)\)
\(BH=35-22,4=12,6\left(cm\right)\)
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính AB,AC,BC,AH,BH,CH
Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính AB,AC,BC,AH,BH,CH
Cho ΔABC vuông tại A, đường cao AH, cho AD là tia phân giác của ∠BAC, cho BD = 4 và CD = 5. Tính AB, AC, BH, CH, AH.
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AB=\dfrac{4}{5}AC\)
Ta có: BC=BD+CD
nên BC=4+5
hay BC=9cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)
\(\Leftrightarrow AC^2=\dfrac{225}{41}\)
\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A , phân giác AD , đường cao AH . Biết BD = 15 cm , CD = 20 cm . Tính BH , HC
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)