cho a1, a2, ..., a2017 là các số tự nhiên thỏa mãn \(\frac{1}{a1_{ }^2}+\frac{1}{a2^2}+...+\frac{1}{a_{ }2017^2}>4\) chứng minh rằng trong 2017 số trên tồn tại ít nhất 4 số bằng nhau
cho a1 , a2,.., a2017 là các số tự nhiên thỏa mãn \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}^2}>4\)chứng minh rằng trong 2017 số trên tồn tại ít nhất 4 số bằng nhau
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.
xin đính chính lại là VT > 5. Bạn giúp mình bài này với
Sửa đề theo như người đăng thì VT > 6
Giả sử trong 2017 số đó không có 4 số nào bằng nhau thì ta có:
\(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}}\le3\left(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{672^2}\right)+\frac{1}{673^2}\)
\(< 3\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{671.672}\right)+\frac{1}{673^2}\)
\(=3\left(1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{671}-\frac{1}{672}\right)+\frac{1}{673^2}\)
\(=3\left(1+1-\frac{1}{672}\right)+\frac{1}{673^2}< 6\)
Vậy trong 2017 số có ít nhất 4 số bằng nhau.
Cho 2016 số nguyên dương : a1,a2,a3,....,a2016 thỏa mãn
1/a1+1/a2+1/a3+...+1/a2016=300
Chứng minh tronng 2016 đã cho tồn tại ít nhất hai số bằng nhau.
cho 2005 số tự nhiên sao cho 4 số khác nhau bất kì trong chúng đều lập thành 1 tỉ lệ thức . chứng minh rằng trong các số đã cho luôn tồn tại ít nhất 502 số bằng nhau
Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát
Mình chỉ nói sơ thôi mong bạn hiểu cho mình
Cho 2002 số tự nhiên,trong đó có 4 số bất kì trong chúng đều lập nên 1 tỉ lệ thức . Chứng minh rằng trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau
cho 2016 số nguyên dương a1; a2; a3; ...... ;a2016 thõa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+......+\frac{1}{a_{2016}}\)= 300
chứng minh rằng trong 2016 số đã cho tồn tại ít nhất hai số bằng nhau
1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)
2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)
3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:
Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản
b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)
4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)
5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên
6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)
8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)
9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)
10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau
Ô...mai..gót
Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K
Hãy đăng từng câu một
Ai đồng quan điểm
Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?
Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu
Cho 2002 số tự nhiên, trong đó cứ 4 số bất kỳ trong chúng đều lập nên một tỉ lệ thức. Chứng minh rằng trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
Giả sử 2015 số nguyên dương \(a_1,a_2,a_3,...,a_{2015}\) thoả mãn:
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}=1008\)
Chứng minh rằng có ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau.
Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử
\(a_1< a_2< ...< a_{2015}\)
Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra
\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
Suy ra
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Mâu thuẫn với giả thiết
Do đó điều giả sử là sai
Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c