Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Trinh
Xem chi tiết
alibaba nguyễn
29 tháng 6 2017 lúc 16:31

Đề sai rồi. Chỉ cần  \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.

Bao Trinh
30 tháng 6 2017 lúc 10:14

xin đính chính lại là VT > 5. Bạn giúp mình bài này với

alibaba nguyễn
1 tháng 7 2017 lúc 10:53

Sửa đề theo như người đăng thì VT > 6

Giả sử trong 2017 số đó không có 4 số nào bằng nhau thì ta có:

\(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}}\le3\left(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{672^2}\right)+\frac{1}{673^2}\)

\(< 3\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{671.672}\right)+\frac{1}{673^2}\)

\(=3\left(1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{671}-\frac{1}{672}\right)+\frac{1}{673^2}\)

\(=3\left(1+1-\frac{1}{672}\right)+\frac{1}{673^2}< 6\)

Vậy trong 2017 số có ít nhất 4 số bằng nhau.

Pham Trung
Xem chi tiết
huyen
Xem chi tiết
h123456
2 tháng 8 2015 lúc 15:40

Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát

Mình chỉ nói sơ thôi mong bạn hiểu cho mình

roronoa zoro
Xem chi tiết
Phan Hằng Giang
Xem chi tiết
nguyen thi quynh huong
Xem chi tiết
Giáp Minh Anh
14 tháng 4 2019 lúc 13:15

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

Trương Thanh Long
14 tháng 4 2019 lúc 13:42

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

nguyen thi quynh huong
14 tháng 4 2019 lúc 13:42

Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu

Gia Tộc- 王千 Vương Thiê...
Xem chi tiết
TFboys_Lê Phương Thảo
3 tháng 5 2016 lúc 11:15

Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được

Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5

Theo đề bài ta có

Xét 4 số a1;a2;a3;a4

a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay  a1.a3=a2.a4)  (1)

Xét 4 số a1;a2;a3;a5

a1.a5=a2.a3            (2)

Từ (1) và (2) suy ra a4=a5(không thỏa mãn)

Suy ra chỉ có 4 số khác nhau trong đó  

Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng

Hà Phương
Xem chi tiết
Lightning Farron
12 tháng 8 2016 lúc 22:51

Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử 

\(a_1< a_2< ...< a_{2015}\)

Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra

\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)

Suy ra 

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)

Mâu thuẫn với giả thiết

Do đó điều giả sử là sai

Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau

Lightning Farron
12 tháng 8 2016 lúc 21:31

quen quá lolang

lưu ly
Xem chi tiết
Kinomoto Sakura
8 tháng 8 2021 lúc 16:32

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c