Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử
\(a_1< a_2< ...< a_{2015}\)
Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra
\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
Suy ra
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Mâu thuẫn với giả thiết
Do đó điều giả sử là sai
Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau