(x-5)2020+(y-x+1)2022=0
Giúp mình vs!!!
cho x, y, z thỏa mãn biểu thức( x - 1 )^2018 + (y - 2 )^2020+(z-3)^2022=0 Tính giá trị biểu thức sau: A=1/9(-x)^2021y^2z^3 Làm ơn giúp mình với mình đang vội
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Bài 3: tìm x biết
a) x^+3x=0
b) (x-1)(x^+x+1)-x(x-2)(x+2)=7
c) x(x-2022)+4(2022-x)=0
giúp mình vs ạ , mình cần gấp 🌷
câu a chưa đủ đề em hấy
c, \(x\)(\(x\) - 2022) + 4.(2022 - \(x\)) = 0
(\(x\) - 2022).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x-2022=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2022\\x=4\end{matrix}\right.\)
b, (\(x\) - 1)(\(x^2\) + \(x\) + 1) - \(x\)(\(x\) - 2)(\(x\) + 2) = 7
\(x^3\) - 1 - \(x\).(\(x^2\) - 4) = 7
\(x^3\) - 1 - \(x^3\) + 4\(x\) = 7
(\(x^3\) - \(x^3\)) - 1 + 4\(x\) = 7
- 1 + 4\(x\) = 7
4\(x\) = 7 + 1
4\(x\) = 8
\(x\) = 8:4
\(x\) = 2
TÌM X,Y,Z (x-1)^2018+(y+3)^2020+(z-5)^2022=0
AI NHANH NHẤT MIK TICK
( x - 1 )2018 + ( y + 3 )2020 + ( z - 5 )2022 = 0
Ta thấy : ( x - 1 )2018 \(\ge0\) ; ( y + 3 )2020 \(\ge0\) ; ( z - 5 )2022 \(\ge0\)
\(\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left(z-5\right)^{2022}\ge0\)
Theo đề,ta có : \(\left(x-1\right)^{2018}=\left(y+3\right)^{2020}=\left(z-5\right)^{2022}=0\)
+) \(\left(x-1\right)^{2018}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+3\right)^{2020}=0\Rightarrow y+3=0\Rightarrow y=-3\)
=) \(\left(z-5\right)^{2022}=0\Rightarrow z-5=0\Rightarrow z=5\)
Vậy : x = 1 ; y = -3 ; z = 5
\(\text{Ta có:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\\\left(y+3\right)^{2020}\ge0\\\left(z-5\right)^{2022}\ge0\end{cases}}\text{mà:}\left(x-1\right)^{2018}+\left(y-2\right)^{2020}+\left(z-3\right)^{2022}=0\text{ nên:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}=0\\\left(y+3\right)^{2018}=0\\\left(z-5\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-3\\z=5\end{cases}}\)
bạn tự kết luận
cho( x-1)^2022+/y+1/=0 tính giá trị biểu thức p=x^2023.y^2022/(2x+y)^2022+2023
ai giúp mình với
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
mọi người hãy trình bầy rõ ra nhé
em ko hiểu nên nếu nói tắt sẽ ko thể tiếp thu
tìm x,y biết
a)x^20=x^10 b)(x-2)^2018+(y-1)2020=0
ai giải giúp mình vs ạ!!!!
a) ta có \(x^{20}=x^{10}< =>x^{20}-x^{10}=0\)
<=> \(x^{10}\left(x^{10}-1\right)=0\)
<=>\(\orbr{\begin{cases}x^{10}=0\\x^{10}=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=+-1\end{cases}}\)
b) ta có \(\left(x-2\right)^{2018}>=0\)
\(\left(y-1\right)^{2020}>=0\)
=> \(\left(x-2\right)^{2018}+\left(y-1\right)^{2020}>=0\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Giúp mình vs!!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\) mũ 0
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Mình làm hơi tắt, để mình làm lại nhé!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=5\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Tìm x,y biết:
(2x-5)2020+(5y+1)2022 < hoặc = 0
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
(3x-2^4).7^2019=2.7^2020
5^x+1.5^2021=5^2022
giúp mình với mình tick cho