Tìm các giá trị x để các biểu thức sau có giá trị dương
a)x^2-7/9x
b)x-2/x+5
tìm các giá trị của x để các biểu thức sau nhận giá trị âm
a) x2+5x
b) 3(2x+3) (3x-5)
bài 2. tìm các giá trị của x để biểu thức sau nhận giá trị dương
a)2y2-4y
b) 5(3y+1) (4y-3)
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
Bài 2:
a: \(2y^2-4y>0\)
\(\Leftrightarrow y\left(y-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>2\\y< 0\end{matrix}\right.\)
b: \(5\left(3y+1\right)\left(4y-3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>\dfrac{3}{4}\\y< -\dfrac{1}{3}\end{matrix}\right.\)
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Chứng minh các giá trị của các biểu thức sau luôn dương
a)x^2-2x+y^2+4y+6
b)x^2-2x+2
\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
hay giá trị của biểu thức trên luôn dương
\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay giá trị của biểu thức trên luôn dương
A)Tìm các giá trị nguyên của x để các biểu thức sau co giá trị lớn nhất:
1) A=14-x/4-x
2) B=1/7-x
3) C=27-2x/12-x
B) Tìm các giá trị nguyên của x để cac biểu thức sau có giá trị nhỏ nhất:
1) A=1/x-3
2) B=7-x/x-5
3) C=5x-19/x-4
1)
TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ DƯƠNG
(1/2-2).(1/3-X)
2)TÌM CÁC GIÁ TRỊ CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ ÂM
A)X^2-2/5X B)E=X-2/X-6
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
tìm giá trị của x để các biểu thức sau có giá trị dương:
a) (-2+2/5x +1 ) (x-2024)
b) x-2/x+5
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
\(x\) | \(\dfrac{5}{2}\) 2024 |
\(x\) - 2024 | - - 0 + |
- 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
\(x\) | -5 2 |
\(x-2\) | - - 0 + |
\(x+5\) | - 0 + 0 + |
F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
tìm x nguyên để các biểu thức sau có giá trị nguyên
B= \(\dfrac{x+2}{x+1}\)
C= \(\dfrac{5}{2x+7}\)
Lời giải:
$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$
Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên.
Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;-2\right\}$
Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:
$5\vdots 2x+7$
$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$
$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$
B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)
=> Để B nguyên thì 1 chia hết cho x+1
=> x+1 ∈Ư(1)={1,-1}
X+1 | 1 | -1 |
x | 0 | -2 |
Vậy để B nguyên thì x∈{0,-2}
C=\(\dfrac{5}{2x+7}\)(x khác -7/2)
Để C nguyên thì 5 chia hết cho 2x+7
=>2x+7∈Ư(5)={1,-1,5,-5}
2x+7 | 1 | -1 | 5 | -5 |
x | -3 | -4 | -1 | -6 |
Để C nguyên thì x∈{-3,-4,-1,-6}
Để B=\(\dfrac{x+2}{x+1}\) là số nguyên thì x+2 ⋮ x+1
x+2 ⋮ x+1
⇒x+1+1 ⋮ x+1
⇒1 ⋮ x+1
Ta có bảng:
x+1=-1 ➜x=-2
x+1=1 ➜x=0
Vậy x ∈ {-2;0}
Để C= \(\dfrac{5}{2x+7}\) là số nguyên thì 5 ⋮ 2x+7
5 ⋮ 2x+7
⇒2x+7 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
2x+7=-5 ➜x=-6
2x+7=-1 ➜x=-4
2x+7=1 ➜x=-3
2x+7=5 ➜x=-1
Vậy x ∈ {-6;-4;-3;-1}
Chúc bạn học tốt!
Tìm các giá trị nguyên của x để các biểu thức sau cùng có giá trị nguyên.
A=(4x-7)/x-2 B=2/(x-3)
Tìm các giá trị sau của x để các biểu thức sau có giá trị âm
A=x mũ 2 + 4x
B=(x-3)(x+7)
C=(1/2-x)(1/3-x)
\(A=x^2+4x< 0\)
\(=>x^2< -4x\)
\(=>x< -4\)
\(\left(x-3\right)\left(x+7\right)< 0\)
\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)
\(=>-7< x< 3\)
\(x^2+4x< 0\)
\(\Rightarrow x\left(x+4\right)< 0\)
Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)
Những câu còn lại tương tự thôi
A = x2 + 4x
A = x . (x + 4)
Để A là số âm
Có 2 trường hợp (1)
=> \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}\Rightarrow}}-4< x< 0\)
=> x = -3 ; -2 ; -1
(2)
\(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}x\in O}\)
B=(x-3) (x+7)
Để B là số âm
=> có 2 trường hợp
\(\left(1\right)\hept{\begin{cases}x-3< 0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>7\end{cases}\Rightarrow x}\in O}\)
\(\left(2\right)\hept{\begin{cases}x-3>0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -7\end{cases}\Rightarrow}-7< x< 3}\)