Chứng minh
a/ n3-n chia hết cho 6
b/ 1993-199 chia hết cho 200
Bài 6. Chứng minh rằng:
a) 9993 + 1 chia hết cho 1000.
b) 1993 − 199 chia hết cho 200.
:a) 9993 + 1
= 9993 + 13
=(999+1)(9992−999+1)
=1000.(9992−999+1)⋮1000
b) 1993 − 199
= 1993 + 1-200
=(199+1)(1992−199+1) -200
=200(1992−199+1) -200⋮200
chứng minh 199^3 -199 chia hết cho 200
\(199^3-199=199.\left(199^2-1\right)=199.\left(199+1\right).\left(199-1\right)=199.200.198⋮200\left(đpcm\right)\)
\(199^3-199=199\left(199^2-1\right)=199\left(199+1\right)\left(199-1\right)=199.200.198⋮200\left(đpcm\right)\)
chứng minh rằng: 199^3 - 199 chia hết cho 200
1993 - 199 = 199 ( 1992 - 1 ) = 199 ( 199 + 1 ) ( 199 - 1 ) = 199 . 198 . 200
=> 1993 - 199 chia hết cho 200
chứng minh rằng: (199^3 -199) chia hết cho 200
\(199^3-199=199\left(199^2-1\right)\)
= \(199.\left(199-1\right)\left(199+1\right)=199.198.200\) \(⋮\) 200 (đpcm)
Chứng minh rằng:
(1993-199) chia hết cho 200
1993-199=199(1992-1)=199(199+1)(199-1)=199.198.200 chia hết cho 200
CHọn mình nha :)
Chứng minh rằng: “Với mọi số tự nhiên n, n3 chia hết cho 3 thì n chia hết cho 3”. Một bạn học sinh đã dùng phản chứng như sau:
Bước 1: Giả sử n không chia hết cho 3 khi đó n = 3k + 1 hoặc n = 3k + 2, k ∈ N .
Bước 2: Với n = 3k + 1 ta có n3 = (3k + 1)3 = 27k3 + 27k2 + 9k + 1 chia hết cho 3
Bước 3: Với n = 3k + 2 ta có n3 = (3k + 2)3 = 27k3 + 54k2 + 36k + 4 không chia hết cho 3 (mâu thuẫn)
Bước 4: Vậy n chia hết cho 3.
Lập luận trên sai từ bước nào?
A. Bước 1.
B. Bước 2
C. Bước 3.
D. Bước 4.
Đáp án: B
Bước 2 sai vì 27k3 + 27k2 + 9k + 1 không chia hết cho 3
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?
chứng minh
a) (n+3)^2 - (n+1)^2 chia hết cho 8 với mọi số tự nhiên n
b) (n+6)^2 - (n-6)^2 chia hết cho 24 với mọi số tự nhiên n
a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2)
Sẽ ko chia hết cho 8 nếu n là số lẻ!
b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n
Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt
cho số tự nhiên n chia hết cho 3. Chứng tỏ:A=n3+n2+3 không chia hết cho 9
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm