Tìm cặp số x và y biết
5xy-5x+y=5
Tìm cặp số nguyên x,y biết 5xy-5x+y=5
5xy - 5x + y = 5
<=> 5xy = 5 + 5x - y
<=> \(\left\{{}\begin{matrix}x=\dfrac{5+5x-y}{5y}\\y=\dfrac{5+5x-y}{5x}\end{matrix}\right.\)
\(5xy-5x+y=5\)
\(\Rightarrow5x\left(y-1\right)+\left(y-1\right)=4\)
\(\Rightarrow\left(y-1\right)\left(5x+1\right)=4\)
Do \(x,y\in Z\)
TH1: \(\left\{{}\begin{matrix}y-1=1\\5x+1=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=2\left(tm\right)\\x=-\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}y-1=4\\5x+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}y-1=2\\5x+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\left(tm\right)\\x=\dfrac{1}{5}\left(ktm\right)\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}y-1=-2\\5x+1=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\left(tm\right)\\x=-\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}y-1=-1\\5x+1=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
TH6: \(\left\{{}\begin{matrix}y-1=-4\\5x+1=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\left(tm\right)\\x=-\dfrac{2}{5}\left(ktm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;5\right);\left(-1;0\right)\right\}\)
tìm các cặp số nguyên x y sao cho ;
a/5xy-5x+y=5
b/xy=x-y
tìm các cặp số nguyên x,y biết
a,(x+1)(y+3)=0
b,(x-5)(y-6)=-5
c,xy+5x=-7
a, Vì (x + 1) (y +3) = 0
nên x + 1 = 0 hoặc y + 3 = 0
+ Nếu x + 1 = 0 thì x = -1
+ Nếu y + 3 = 0 thì y = -3
Vậy x = -1; y = -3
b, Vì (x - 5) (y - 6) = - 5
nên x - 5 và y - 6 thuộc Ư(-5) = {1; 5; -1; -5}
Ta có bảng sau:
x - 5 | 1 | 5 | -1 | -5 |
y - 6 | -5 | -1 | 5 | 1 |
x | 6 | 10 | 4 | 0 |
y | 1 | 5 | 11 | 7 |
Vậy nếu x = 6 thì y = 1
x = 10 thì y = 5
x = 4 thì y = 11
x = 0 thì y = 7
c, xy + 5x = -7
x (y + 5) = -7
Vậy x và y- 5 thuộc Ư(-7) = {1; 7; -1; -7}
Ta có bảng sau:
x | 1 | -1 | 7 | -7 |
y - 5 | -7 | 7 | -1 | 1 |
y | -2 | 12 | 4 | 6 |
Vậy nếu x = 1 thì y = -2
x = -1 thì y = 12
x = 7 thì y = 4
x = -7 thì y = 6
a ) ( x + 1 ) ( y + 3 ) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0-1=-1\\y=0-3=-3\end{cases}}\)
a, ( x + 1 )( y + 3 ) = 0
=> x + 1 = 0 hoặc y + 3 = 0
Nếu x + 1 = 0
x = 0 - 1 = -1
Nếu y + 3 =0
y = 0 - 3 = -3
Vậy x = -1 và y = -3
tìm cặp số nguyên x, y biết:
a. |3x| + |y+5| = 5
b. |5x| + |2y + 3| = 7
b/
Do \(0\le\left|5x\right|\le7\) và |5x| chia hết cho 5 nên |5x| = 0 hoặc |5x| = 5
+Nếu |5x| = 5 thì |2y+3| = 2 (không thỏa vì 2y là số chẵn, 2y+3 là số lẻ nên |2y+3| là số lẻ)
+Nếu |5x| = 0 thì |2y+3| = 7
=> 5x = 0; 2y+3 =7 hoặc 2y+3 = -7
=> x=0; y= 4 hoặc y= -5
Vậy có 2 cặp (x,y) là (0;4) (0;-5)
a,x=1 ; y=-3
b; không có x,y
**** nguyễn thị vân anh !
Mấy b kia k biết vào làm bài hay vào xin l.i.k.e nhỉ? Làm điêu thao lướt qua dòng nước, không đọc yêu cầu "giải cụ thể" của người ta nữa ~~~
\(5x-y\left(x-3\right)=8\)
\(\Leftrightarrow5x-15-y\left(x-3\right)=8-15\)
\(\Leftrightarrow5\left(x-3\right)-y\left(x-3\right)=-7\)
\(\Leftrightarrow\left(5-y\right)\left(x-3\right)=-7\)
Bảng giá trị:
5-y | -7 | -1 | 1 | 7 |
x-3 | 1 | 7 | -7 | -1 |
x | 4 | 10 | -4 | 2 |
y | 12 | 6 | 4 | -2 |
Vậy các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(4;12\right);\left(10;6\right);\left(-4;4\right);\left(2;-2\right)\)
Bài 1 : Tìm các cặp số nguyên x , y sao cho : ( Trình bày rõ => like )
a, 5xy - 5x + y = 5
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Bài 1 : Tìm các cặp số nguyên x , y sao cho : ( Trình bày rõ => like )
a, 5xy - 5x + y = 5
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
tìm các cặp số tự nhiên x,y:
B, (2x+1).(y-3)=10
C, 2xy-x+2y=13
D, 6xy-9x-4y+5=0
E, 2xy-6x+y=13
F, 2xy-5x+2y=148
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
Tìm các cặp số nguyên (x;y) thỏa mãn y(x + 3) - 5x - 15 = 2
\(y\left(x+3\right)-5x-15=2\\ \Rightarrow y\left(x+3\right)-\left(5x+15\right)=2\\ \Rightarrow y\left(x+3\right)-5\left(x+3\right)=2\\ \Rightarrow\left(y-5\right)\left(x+3\right)=2\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y-5,x+3\in Z\\y-5,x+3\inƯ\left(2\right)\end{matrix}\right.\)
Ta có bảng:
x+3 | 1 | 2 | -1 | -2 |
y-5 | 2 | 1 | -2 | -1 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;7\right);\left(-1;6\right);\left(-4;3\right);\left(-5;4\right)\right\}\)
=>y.(x+3)-5(x+3)=2
=>(y-5).(x+3)=2
x+3 | 1 | -1 | 2 | -2 |
y-5 | 1 | -1 | 2 | -2 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |