5x.(4+6x)=290
phân tích đa thức
x^4+6x^3+11x^2+6x+1
x^4+x^3+x^2+x+1
6x^4+5x^3-38x^2+5x+6
x^4+5x^3-12x^2+5x+1
a)\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+6x+2x^2\)
\(=\left(x^2+3x+1\right)^2\)
\(x^4+5x^3-12x^2+5x+1\)
\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x-1\right)^2\)
a,5x(4+6*x)=290
b,(15x24-x):0,25=100:1/4
Các bn giúp mình nha
a, \(5\cdot\left(4+6\cdot x\right)=290\Rightarrow4+6\cdot x=290:5\Rightarrow4+6\cdot x=58\)
\(\Rightarrow6\cdot x=58-4\Rightarrow6\cdot x=54\Rightarrow x=54:6\Rightarrow x=9\)
b, \(\left(15\cdot24-x\right):0,25=100:\frac{1}{4}\Rightarrow\left(15\cdot24-x\right):\frac{1}{4}=100:\frac{1}{4}\)
\(\Rightarrow\left(15\cdot24-x\right):\frac{1}{4}=100\cdot\frac{4}{1}\Rightarrow\left(15\cdot24-x\right):\frac{1}{4}=400\)
\(\Rightarrow15\cdot24-x=400\cdot\frac{1}{4}\Rightarrow15\cdot24-x=100\Rightarrow360-x=100\)
\(\Rightarrow x=360-100\Rightarrow x=260\)
dấu sao là j vậy bn
phân tích đa thức
a)x^4+6x^3+11x^2+6x+1
b)x^4+x^3+x^2+x+1
c)6x^4+5x^3-38x^2+5x+6
d)x^4+5x^3-12x^2+5x+1
dễ mà bạn xin 20 phút làm ra giấy nhé :))
a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)
\(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(\left(x^2+3x+1\right)^2\)
b) \(x^4+x^3+x^2+x+1\)
câu b, chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R
vì lớp 8 chưa học đến số phức
\(x^4+x^3=-x^2-x-1\)
\(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)
\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)
\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)
\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)
denta < 0 x vô nghiệm
vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q
c) ,
\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)
\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)
\(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)
\(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)
\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)
d)
\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)
\(\left(x-1\right)^2\left(x^2+7x+1\right)\)
\(\Delta=49-4=45\)
\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)
\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)
Phân tích đa thức thành nhân tử:
1, x^3-x+y^3-4
2, 4x^2-y^2+4x+1
3, x^4+2x^3+x^2
4, x^2+5x-6
5, 7x-6x^2-2
6, 5x^2+5xy-x-y
7, 2x^2+3x-5
8,x^4-5x^2+4
9, x^3-5x^2+45-9x
10, x^4-2x^3-2x^2-2x-3
11, 81x^4+4
12,x^5+x+1
13, x^4+6x^3+7x^2-6x+1
14, x(x+4)(x+6)(x+10)+128
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
giải phương trình 6x^4 - 5x^3 - 38x^2 -5x +6
Nhận thấy \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\) ta được:
\(6\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)-5t-38=0\)
\(\Leftrightarrow6t^2-5t-50=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{10}{3}\\t=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{10}{3}\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x^2-10x+3=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-2;-\dfrac{1}{2};\dfrac{1}{3};3\right\}\)
(5x-1)(5x+1)+4-25x2+6x
\(=25x^2-1+4-25x^2+6x=6x+3=3\left(2x+1\right)\)
\(=25x^2-1+4-25x^2+6x\)
\(=6x+3\)
\(=3\left(2x+1\right)\)
T nha
B5:Giải pt:
a)2x\(^2\)-8=0
b)3x\(^3\)-5x=0
c)x\(^4\)+3x\(^2\)-4=0
d)3x\(^2\)+6x-9=0
e)\(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
g)5x\(^4\)+6x\(^2\)-11=0
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c