giúp mình voiiiii
-2x+5y=8
xy-2x+3x=5
8. Tìm x, y ϵ Z.
a) y=4x−8/2x+5y=4x−82x+5 b) xy-3x+2y=7
a,ko hiểu đề lắm (ghi rõ ra)
b,xy-3x+2y=7 (2)
⇒(xy+2y)-(3x+6)=1
⇒y(x+2)-3(x+2)=1
⇒(y-3)(x+2)=1
⇒y-3∈Ư(1)∈{1;-1}
TA LẬP BẢNG:
y-3 | 1 | -1 |
y | 4 | 2 |
x+2 | 1 | -1 |
x | -1 | -3 |
Vậy các cặp (x;y) thỏa mãn pt (2) là:(-1;4);(-3:2)
Tính:
a) 5x2y - xy
b) 3x( x - 2 ) + 5(2 - x)
c) x2+2x +1 + 9y2
d) x2 - 5y - xy + 5x
giúp mình vs ;-;
\(a,=xy\left(5x-1\right)\\ b,=\left(x-2\right)\left(3x-5\right)\\ c,Sửa:x^2+2x+1-9y^2\\ =\left(x+1\right)^2-9y^2\\ =\left(x-3y+1\right)\left(x+3y+1\right)\\ d,=x\left(x-y\right)+5\left(x-y\right)=\left(x+5\right)\left(x-y\right)\)
â) \(=xy\left(5x-1\right)\)
b) \(=\left(3x-5\right)\left(x-2\right)\)
c) \(=\left(x+1\right)^2+\left(3y\right)^2=\left(x+1\right)^2+6y\left(x+1\right)+\left(3y\right)^2-6y\left(x+1\right)=\left(x+1+3y\right)^2-\sqrt{\left[6y\left(x+1\right)\right]^2}=\left(x+3y+1-\sqrt{6y\left(x+1\right)}\right)\left(x+3y+1+\sqrt{6y\left(x+1\right)}\right)\)
d) \(=\left(x^2+5x\right)-\left(5y+xy\right)=x\left(x+5\right)-y\left(5+x\right)=\left(x-y\right)\left(x+5\right)\)
3x(2x-7)+2x(5-3x)
3x(x-4y)-12/5y(y-5x)
Mong mọi người giúp mình sớm
Tìm các cặp số (x,y) biết:
2xy+x+2y=5;xy+3x-3y=5
xy+2x+2y=16;x+xy+y=9
xy-3x-y=0;9xy+3x+3y=51(x,y thuộcN*) 2x-5y+5xy=14
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
tìm x y
x^3-3x^2+7x-21=2y
xy-2x-3y=5
2xy-3x+5y=8
giups minhf vs
1.Giải hpt bằng pp đặt ẩn phụ ; 1\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\dfrac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\dfrac{-5}{4}\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}x^3+3x^2-13x-15=\dfrac{8}{y^3}-\dfrac{8}{y}\\y^2+4=5y^2\left(x^2+2x+2\right)\end{matrix}\right.\)
1.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)
2.
\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)
\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)
\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)
\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\)
\(\Rightarrow...\)
xy-7x+y=-22
xy-3x+y=-20
xy-5y-2x=-41
TÌM X
GIÚP MK NHA
Toi cung co cau giong the nhung tra lam duoc
xy - 7x + y = -22
xy + y - 7x = -22
y ( x + 1 ) - 7x = -22
y ( x + 1 ) - 7x - 7 = -29
y ( x + 1 ) - ( 7x + 7 ) = -29
y ( x + 1 ) - 7 . ( x + 1 ) = -29
( y - 7 ) . ( x + 1 ) = -29
ta có bảng sau :
y-7 | -29 | 1 | -1 | 29 |
x+1 | 1 | -29 | 29 | -1 |
y | -22 | 8 | 6 | 36 |
x | 0 | -30 | 28 | -2 |
Vậy ....
giúp mình giải bài này nha.mai mình đi học rồi. cảm ơn mọi người nhiều:
tìm GTNN của biểu thức:
B= X2+Y2-XY+3X+3Y+20
C=X2-XY+Y2-2X-2Y
M=(X-1).(X+2).(X+3).(X+6)
N=(X-1).(X-3).(X2-4X+5)
D=X2+XY+Y2-2X-2Y
Q=2X2+5Y2-2XY+2Y+2X
Tìm các cặp số x,y thoả mãn sao cho:
xy+2x-5y-5=0
Nhanh tay giúp mình nha, mình cảm ơn!!!
<=>(x-5)y+2x-5=0
=>(x-5)y+2x-0-5=0
<=>x-5=0
=>x=5
<=>y+2=0
=>y=-2
vay x=5;y=-2