Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Ân
Xem chi tiết
Phan Dang Hai Huy
27 tháng 12 2017 lúc 17:21

12345678

Lưu Đức Mạnh
28 tháng 12 2017 lúc 10:15

\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)

\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)

\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)

Đặt t = a2 +6a. Khi đó phương trình trở thành:

\(A=t\left(t+8\right)\left(t+5\right)+36\)

\(A=t\left(t^2+13t+40\right)+36\)

\(A=t^3+13t^2+40t+36\)

\(A=t^3+2t^2+11t^2+22t+18t+36\)

\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)

\(A=\left(t+2\right)\left(t^2+11t+18\right)\)

\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)

\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)

\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)

\(A=\left(t+2\right)^2\left(t+9\right)\)

Thế t = a2 + 6a vào A ta được:

\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)

\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)

\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)

Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương

Long Lục Bảo
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 12:04

a. Đề sai, với \(x=0\Rightarrow A=4>0\)

b. Đề sai, với \(x=0\Rightarrow B=12>0\)

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 13:08

Đề sai rồi bạn

Shinnôsuke
Xem chi tiết
Đinh Đức Hùng
5 tháng 2 2016 lúc 19:49

Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d 

Đinh Đức Hùng
5 tháng 2 2016 lúc 19:46

a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A  - 1

b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )

Vì a+ a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ

Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d

Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau

Biểu thức A là phân số tối giản

HOPE
Xem chi tiết
HOPE
23 tháng 12 2018 lúc 10:44

mọi người giúp mình với

Nguyệt
23 tháng 12 2018 lúc 11:11

\(A=x^2-4^2-\left(x+3\right).\left(-2x+x+3\right)=x^2-4^2-\left(x+3\right).\left(-x+3\right)\)

\(=x^2-16+9-x^2=-7\)

=> đpcm

Trịnh Sảng
Xem chi tiết
Kim Tuyến
Xem chi tiết
Lê Thị Hồng Vân
9 tháng 6 2021 lúc 15:56

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

Đặng Hồng Phong
Xem chi tiết
Nguyễn Huy Tú
12 tháng 4 2022 lúc 18:34

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm 

Nguyễn Minh Hiển
Xem chi tiết
Jungkook Jeon
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2022 lúc 13:39

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)