Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Nguyễn Hạnh Linh
Xem chi tiết
nameless
13 tháng 10 2019 lúc 16:22

Sửa chút, chỗ mẫu 11c + 3b thành 11c +3d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{11a}{11c}=\frac{3b}{3d}=\frac{11a+3b}{11c+3d}\\\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{11b}{11d}=\frac{3a-11b}{3c-11d}\end{cases}}\)
\(\Rightarrow\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)
Vậy \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)

Nguyễn Minh Thọ
Xem chi tiết
Tran Phut
Xem chi tiết

loading...

Phương Diễm
Xem chi tiết
Nguyệt
8 tháng 11 2018 lúc 12:01

a) \(\frac{a}{b}=\frac{c}{d}=\frac{11a}{11b}=\frac{9c}{9d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{11a+9c}{11b+9d}\)

\(\Rightarrow\frac{a}{b}=\frac{11a+9c}{11c+9d}\left(đpcm\right)\)

b) \(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{5c}{5d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{3a^2}{3b^2}=\frac{5c^2}{5d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{3a^2+5c^2}{3b^2+5d^2}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(2\right)\)

từ (1) và (2) => \(\frac{3a^2+5c^2}{3b^2+5d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

Lê Thanh Trúc
Xem chi tiết
Nguyễn Hoàng Tiến
17 tháng 6 2016 lúc 7:47

a) Ta có:

\(\frac{a}{b}=\frac{11a}{11b}\) và \(\frac{c}{d}=\frac{9c}{9d}\)

Mà \(\frac{a}{b}=\frac{c}{d}\) nên suy ra \(\frac{a}{b}=\frac{11a}{11b}=\frac{9c}{9d}\)

=> \(\frac{a}{b}=\frac{11a+9c}{11b+9d}\)

Trần Cao Anh Triết
17 tháng 6 2016 lúc 7:53

\(\text{a) Ta có: }\)

\(\frac{a}{b}=\frac{11a}{11b}\)\(\text{và }\)\(\frac{c}{d}=\frac{9c}{9d}\)

\(\text{Ma dau bai cho}\) \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\)\(\frac{a}{b}=\frac{11a}{11b}=\frac{9c}{9d}\)

\(\text{Vay }\)\(\frac{a}{b}=\frac{11a+9c}{11b+9d}\)

VICTOR_terminator
17 tháng 6 2016 lúc 7:57

dựa vào công thức 2 phân số bằng nhau

a)\(\frac{a}{b}=\frac{11a+9c}{11b+9d}\) 

do \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{11a+9c}{11b+9d}=\frac{a\times\left(11+9\right)}{b\times\left(11+9\right)}\)

\(\Rightarrow\)tự làm tiếp đi

Đức Anh nguyễn
Xem chi tiết

Bài 3: p,q là các số nguyên tố lớn hơn 5

=>p,q là các số lẻ

=>p=2a+1; q=2b+1

\(p^4-q^4\)

\(=\left(2a+1\right)^4-\left(2b+1\right)^4\)

\(=\left\lbrack\left(2a+1\right)^2-\left(2b+1\right)^2\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=\left\lbrack4a^2+4a-4b^2-4b\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=4\left(a^2-b^2+a-b\right)\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\) ⋮4

=>\(p^4-q^4+2020q^4\) ⋮4

=>\(p^4+2019q^4\) ⋮4(2)

p,q là các số nguyên tố lớn hơn 5

mà p,q là các số lẻ

nên p,q chỉ có thể có tận cùng là 1;3;7;9

=>\(p^4;q^4\) đều có tận cùng là 1

=>\(p^4-q^4\) ⋮10

=>\(p^4-q^4+2020q^4\) ⋮10

=>\(p^4+2019q^4\) ⋮10(1)

Từ (1),(2) suy ra \(p^4+2019q^4\) ∈BC(4;10)

=>\(p^4+2019q^4\) ⋮20


Bài 2:

a: 5a+3b⋮2018

=>13(5a+3b)⋮2018

=>65a+39b⋮2018

13a+8b⋮2018

=>5(13a+8b)⋮2018

=>65a+40b⋮2018

mà 65a+39b⋮2018

nên 65a+40b-65a-39b⋮2018

=>b⋮2018

5a+3b⋮2018

=>8(5a+3b)⋮2018

=>40a+24b⋮2018

13a+8b⋮2018

=>3(13a+8b)⋮2018

=>39a+24b⋮2018

mà 40a+24b⋮2018

nên 40a+24b-39a-24b⋮2018

=>a⋮2018

b:

Sửa đề: M=(9a+11b)(5b+11a)

Vì 19 là số nguyên tố

nên một trong hai số 9a+11b hoặc 5b+11a sẽ chia hết cho 19

TH1: 9a+11b⋮19

=>3(9a+11b)⋮19

=>27a+33b⋮19(2)

Ta có: 3(9a+11b)+5b+11a

=27a+33b+5b+11a

=38a+38b=38(a+b)⋮19(1)

Từ (1),(2) suy ra 5b+11a⋮19

=>(9a+11b)(5b+11a)⋮19*19

=>M⋮361

TH2: 11a+5b⋮19

=>38a+38b-11a-5b⋮19

=>27a+33b⋮19

=>3(9a+11b)⋮19

=>9a+11b⋮19

=>(9a+11b)(11a+5b)⋮19*19

=>M⋮361

vậy: M⋮361


Lê Thanh Trúc
Xem chi tiết
Hiếu Hà Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 22:57

a: Ta có: 5a+3b=-5/6

nên \(6\left(5a+3b\right)=-5\)

=>30a+18b=-5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{30a+18b}{30\cdot7+18\cdot3}=\dfrac{-5}{264}\)

Do đó: a=-35/264; b=-5/88

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{11}=\dfrac{b}{3}=\dfrac{6a-b}{6\cdot11-3}=\dfrac{-3}{63}=\dfrac{-1}{21}\)

Do đó: a=-11/21; b=-1/7

tranvantinh
Xem chi tiết
tranvantinh
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Dat Nguyen tuan
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm