Cho đường thẳng d : y = mx+m -1 tìm m để d cắt Ox tại A Oy tại B sao cho tam giác AOB vuông cân
Cho đường thẳng d: y = m x + m – 1 . Tìm m để d cắt Ox tại A và cắt Oy tại B sao cho tam giác AOB vuông cân.
A. m < 1
B. m = 1
C. m > 1
D. m = 1 h o ặ c m = − 1
d ∩ O y = B ⇒ x B = 0 ⇒ y B = m − 1 ⇒ B 0 ; m − 1 ⇒ O B = m − 1 = m − 1 d ∩ O x = A ⇒ y A = 0 ⇒ m x A + m − 1 = 0 ⇔ x A = 1 − m m m ≠ 0
⇒ A 1 − m m ; 0 ⇒ O A = 1 − m m
Tam giác OAB vuông cân tại O
O A = O B ⇔ = 1 − m m ⇔ m − 1 = 1 − m m m − 1 = m − 1 m ⇔ m 2 = 1 m − 1 1 − 1 m = 0 | m – 1 |
⇔ m = ± 1 m − 1 2 m = 0 ⇔ m = ± 1
Đáp án cần chọn là: D
Đề cho sai, vì khi m = 1 thì ba điểm A, B, O trùng nhau, đáp án đúng là m = -1.
1) Cho hàm số y=(1−m)x+m+2 (với m là tham số và m+1) có đồ thị là đường thẳng (d). a) Tìm m để ( d ) song song với đường thẳng y=2x−1. b) Tìm m để (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác AOB vuông cân.
a) \(y=\left(1-m\right)x+m+2\left(d\right)\)
\(y=2x-1\left(d'\right)\)
\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)
b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)
\(\Leftrightarrow\left(1-m\right)x+m+2=0\)
\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)
\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)
\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)
\(\Leftrightarrow\left(1-m\right).0+m+2=y\)
\(\Leftrightarrow y=m+2\)
\(\Rightarrow B\left(0;m+2\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)
Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi
\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)
Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)
\(\Rightarrow\left(2\right)\) vô nghiệm
Vậy không có giá trị nào của \(m\) thỏa mãn đề bài
cho đường thẳng d: y=mx+2. đường thẳng cắt Ox tại A cắt Oy tại B
tìm m sao cho
tam giác ABC vuông cân tại O
Tính SABC=3
1)cho hàm số y=(1-m)x+m+2(với m là tham số và m≠1)có đồ thị là đường thẳng (d)
a.tìm m để hàm số dồng biến
b. tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A,B sao cho tam giác AOB cân
2)Cho hệ phương trình mx+4y=9
x+my =8( m là tham số)
a. giải hệ phương trình với m =1
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y)thỏa mãn hệ thức 2x+y+38/m2-4=3
Bài 1:
a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0
=>-m>-1
=>m<1
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)
=>\(OB=\left|m+2\right|\)
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)
=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(m\in\left\{0;2;-2\right\}\)
Bài I. Cho hai đuờng thắng (d): y (m-2)x + 3 (m 2); (d): y =- m'x+ 1 (m # 0).
a,Tim m de (d) song song với (d).
b) Tim m để (d) cắt Ox tại A, cắt Oy tại B sao cho BAO = 60°.
Bài 2. Cho đường thẳng (d): y = (2m + 1)x- 2 (m) cắt Ox tại A, cắt Oy tại B. Tim m sao cho:
a) Khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng căn 2.
b) Diện tích tam giác AOB bằng 1/2
Cho hàm số y = ( m -1).x + 2m – 1 ( m khác 1) có đồ thị là đường thẳng (d)
a) Tìm m để (d) đi qua E ( 3, 8)
b) Tìm m để (d) cắt Ox tại A và Oy tại B sao cho diện tích tam giác ABC vuông cân .
c) Tìm m để khoảng cách từ O đến (d) lớn nhất và nhỏ nhất
a: Thay x=3 và y=8 vào (d), ta được:
3(m-1)+2m-1=8
=>5m-4=8
=>5m=12
=>m=12/5
b: Tọa độ A là:
y=0 và x=(-2m+1)/(m-1)
=>OA=|2m-1/m-1|
Tọa độ B là:\
x=0 và y=2m-1
=>OB=|2m-1|
Để ΔOAB vuông cân tại O thì OA=OB
=>|2m-1|(1/|m-1|-1)=0
=>m=1/2 hoặc m=2 hoặc m=0
Trong mặt phẳng Oxy, cho đường thẳng (d): mx + (2 – 3m)y + m – 1 = 0 1) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi số thực m. 2) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất. 3) Tìm m để đường thẳng (d) cắt trục tọa độ Ox, Oy lần lượt tại A, B sao cho tam giác OAB cân.
Cho hàm số y=(m+1)x+3 ( m là tham số và m ≠-1) có đồ thị là đường thẳng (d)
a. tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A và B sao cho diện tích tam giác AOB =9
a: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
vậy: \(A\left(-\dfrac{3}{m+1};0\right)\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: B(0;3)
\(OA=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{3}{m+1}\right)^2}=\left|\dfrac{3}{m+1}\right|\)
\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0+9}=3\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot3\cdot\dfrac{3}{\left|m+1\right|}=\dfrac{9}{2\left|m+1\right|}\)
Để \(S_{AOB}=9\) thì \(\dfrac{9}{2\left|m+1\right|}=9\)
=>2|m+1|=1
=>|m+1|=1/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{1}{2}\\m+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
Cho hs y=(m+1)x + 2 tìm m để đths cắt ox,oy tại A,B sao cho tam giác AOB cân
H/s cắt `Ox` tại `A=>y=0=>0=(m+1)x+2<=>x=-2/[m+1]=>OA=|[-2]/[m+1]|`
H/s cắt `Oy` tại `B=>x=0=>y=2=>OB=|2|=2`
Để `\triangle AOB` cân `=>OA=OB`
`<=>|[-2]/[m+1]|=2`
`<=>|-2|=2|m+1|`
`<=>|m+1|=1<=>[(m+1=1),(m+1=-1):}<=>[(m=0),(m=-2):}`