Tìm số nguyên a sao cho:
a, 3/2a-5 là sôa nguyên
b, 3/7-3a là số tự nhiên
tìm số nguyên a,bt
a, 3/2a-5 là số nguyên
b, 3/7-3a là số tự nhiên
dấu / là phân số,ko phải dấu chia đâu nha
phân số là phép chia đó bạn
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Tìm các số nguyên a sao cho a) 3a + 2/a là số nguyên. b) 2a + 5/a + 1 là số nguyên
a: A nguyên
=>3a+2 chia hết cho a
=>2 chia hết cho a
=>a thuộc {1;-1;2;-2}
b: B nguyuên
=>2a+2+3 chia hết cho a+1
=>a+1 thuộc {1;-1;3;-3}
=>a thuộc {0;-2;2;-4}
Tìm số nguyên a sao cho:
a) (a²+2)(a²-3)(a²-10)<0
b) ( a+1) (a+3)(a+5) >0
c) (3a +1)( a-2)(a-10) <0
d)(- a⁴ -7)(a-3) (a+1) >0
a: \(\Leftrightarrow\left(a^2-3\right)\left(a^2-10\right)< 0\)
\(\Leftrightarrow3< a^2< 10\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}< a< \sqrt{10}\\-\sqrt{10}< a< -\sqrt{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left(a-3\right)\left(a+1\right)< 0\)
hay -1<a<3
1.Tìm số tự nhiên a nhỏ nhất sao cho:a chia 5 dư 3,a chia 7 dư 4
2.Tìm số tự nhiên a và b biết:a-b=5 và (a,b)/[a,b]=1/6
3.Tìm số tự nhiên n lớn nhất có 3 chữ số, sao cho chia 3,4,5,6,7 ta đc các số dư theo thứ tự là 1,2,3,4,5
tìm các số nguyên a biết:
a/ a+3 là ước của 7
b/ 2a là ước của -10
c/ a+1 là ước của 3a +7
d/ 2a+1 là ước của 3a +5
a/ \(a+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-10;-4;-2;4\right\}\)
b/ \(2a\inƯ\left(-10\right)\)
\(Ư\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Rightarrow a\in\left\{-5;-1;1;5\right\}\)do \(a\inℤ\)
c/ \(a+1\inƯ\left(3a+7\right)\Rightarrow3a+7⋮a+1\)
\(\Rightarrow3a+7-3\left(a+1\right)⋮a+1\)
\(\Leftrightarrow4⋮a+1\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow a\in\left\{-5;-3;-2;0;1;3\right\}\)
d/ \(2a+1\inƯ\left(3a+5\right)\Rightarrow3a+5⋮2a+1\)
\(\Rightarrow3a+5-\left(2a+1\right)⋮2a+1\)
\(\Leftrightarrow a+4⋮2a+1\)
\(\Rightarrow2\left(a+4\right)⋮2a+1\Leftrightarrow2a+8⋮2a+1\)
\(\Rightarrow2a+8-\left(2a+1\right)⋮2a+1\Leftrightarrow7⋮2a+1\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-4;-1;0;3\right\}\)
Tìm sác số tự nhiên a sao cho:
a, a + 1 là ước của 5a + 12
b, 3a + 20 chia hết cho a + 2
c, a^2 + 16a là số nguyên
d, 3^a + 12 là số nguyên
a) 5a + 12 = 5(a + 1) + 7
Để a + 1 là ước của 5a + 12 thì a + 1 là ước của 7
⇒ a + 1 ∈ Ư(7) = {1; 7}
⇒ a ∈ {0; 6}
b) 3a + 20 = 3(a + 2) + 14
Để (3a + 20) ⋮ (a + 2) thì 14 ⋮ (a + 2)
⇒ a + 2 ∈ Ư(14) = {1; 2; 7; 14}
Do a ∈ N nên a ∈ {0; 5; 12}
c) Do a ∈ N nên
a² + 16a ∈ Z (với mọi a ∈ N)
Vậy a² + 16a Z với mọi a ∈ N
d) 3ᵅ + 12 ∈ Z
⇒ 3ᵅ ∈ Z
⇒ a ∈ N
Tìm số tự nhiên n sao cho:
a, 2^n + 22 là một số nguyên tố
b,13n là một số nguyên tố
Giaỉ nhanh hộ mình ạ
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}