Rút gọn biểu thức: \({x^3}\left( {x + y} \right) - x\left( {{x^3} + {y^3}} \right)\).
rút gọn biểu thức \(G=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(-x+y+z\right)^3-\left(x-y+x\right)^3\)
Rút gọn biểu thức
a) \(2\left(x+y\right)^3+2\left(x-y\right)^3\)
b) \(\left(x-y\right)^3-\left(x+y\right)^3-3\left(x+y\right)^2\left(x-y\right)-3\left(x+y\right)\left(x-y\right)^2\)
Bài làm
a) 2(x + y)3 + 2(x - y)3
= 2[(x + y)3 + (x - y)3]
= 2[x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3]
= 2[(x3 + x3) + (3x2y - 3x2y) + (3xy2 + 3xy2) + (y3 - y3)]
= 2[2x3 + 6xy2]
= 4x3 + 12xy2
b)uhm... Mình sửa đề chút, thay vì là -3(x + y)2(x - y) thì mình sẽ thành +3(x + y)2(x - y)
(x - y)3 - (x + y)3 + 3(x + y)2(x - y) - 3(x + y)(x - y)2
= -[(x + y)3 - 3(x + y)2(x - y) + 3(x + y)(x - y)2 - (x - y)3]
= -[(x + y) - (x - y)]3
= -[x + y - x + y ]3
= -[y]3
= -y
1) Rút gọn biểu thức
\(\left(x+3\right)^3-\left(x-3\right)^3+3x\left(x-2\right)\)
2) Tính giá trị biểu thức
\(C=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)VỚI x-y = 2
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\) b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
rút gọn biểu thức
\(\frac{x^3+y^3+z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Dat (x-y)2+(y-z)2+(x-z)2=A
=(x+y)3+z3-3x2y-3xy2-3xyz / A
=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A
=(x+y+z).(x2+y2+z2-xy-yz-xz) /A
=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A
=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A
=(x+y+z).[ (x-y}2+(y-z)2+(x-z)2 ] /2A
=(x+y+z). A /2A
=x+y+z /2
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
= \(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
= \(2x^2-4xy+\dfrac{15}{4}y^2\)
b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
= \(x^2-4x+4+x^2+6x+9-2x^2+2\)
= \(2x+15\)
Rút gọn các biểu thức :
a) \(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b) \(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Rút gọn biểu thức sau : \(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
cho x3+y3+z3=3xyz. Rút gọn biểu thức:
A=\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Rút gọn rồi tính: \(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Tính giá trị biểu thức P, biết x+y=2010
\(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)2xy}\)
=\(\frac{x^2+5x+y^2+5y+2xy-3}{x^2+6x+y^2+6y+2xy}\)
triệt tiêu x2;y2;2xy ta được:
\(\frac{5x+5y-3}{6x+6y}=\frac{5\left(x+y\right)-3}{6\left(x+y\right)}\)
=\(\frac{5.2010-3}{6.2010}=\frac{3349}{4020}\)