Cho hình bình hành ABCD. Lấy điểm P trên tia AB sao cho AP = 2 AB.
a) Tứ giác BPCD có phải là hình bình hành không? Tại sao?
b) Khi tam giác ABD vuông cân tại A, hãy tính số đo các góc của tứ giác BPCD.
Cho tam giác ABC, đường cao AH,ở phía ngoài tam giác . Vẽ các tam giác vuông cân ACE,ABD tại đỉnh A. Trên tia đối của tia AH lấy điểm K . Sao cho AK = BC . Cmr tứ giác ADKE là hình bình hành.
Bài 1. Cho hình bình hành ABCD có góc D=60 độ. Kẻ AM vuông góc với DC và CN vuông góc AB.
a)Tứ giác ANCM là hình gì?Vì sao?
b)Chứng minh các đường thẳng AC,BD,MN đồng quy
Bài 2/Cho tam giác cân ABC cân tại A, vẽ đường cao AH, vẽ trung điểm M của đoạn thẳng AC, vẽ điểm N đối xứng với H qua M
a)Tứ giác AHCN là hình gì?Vì sao?
b)Chứng minh tứ giác ABHN là hình bình hành
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.
Mong mn giúp mk vs ah
đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Cho tam giác ABC, đường cao AH. Ở phía ngoài tam giác, ta vẽ các tam giác ACE và ABD vuông cân tại đỉnh A. Trên tia đối của tia AH lấy điểm K sao cho AK = BC. Chứng minh rằng tứ giác ADKE là hình bình hành.
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Bài 1: Cho hình bình hành ABCD, các tia phân giác của góc của hình bình hành cắt nhau tạo thành tứ giác EFGH.
a, Tứ giác EFGH là hình gì? Vì sao?
b, CM: EG = FH
c, Hình bình hành ABCD phải thêm điều kiện gì để EFGH là hình vuông
Bài 2: Cho tam giác ABC, về phía ngoài của tam giác vẽ 2 hình vuông ABEF và ACGH.
CMR: Đường thẳng BG và Ce cắt nhau tại 1 điểm nằm trên đường AD của tam giác ABC
Cho tam giác ABC cân tại A. Gọi P,Q lần lượt là trung điểm của AB, AC.
a, Chứng minh tứ giác BPQC là hình thang cân.
b, Trên tia đối của QB lấy D sao cho QD=QB. Chứng minh tứ giác ABCD là hình bình hành (giúp mình lẹ nha mình sắp phải nộp rồi 😢)
a
vì ABC là tam giác cân=>góc B=C
vì P,Q là trung điểm AB,AC=>PQ là đường tb của tam giác ABC=>PQ//BC
vì PQ//BC=>BPQC là hình thang, mà góc B=C =>BPQC là hình thang cân
b
xét tứ giác ABCD có
Q là trung điểm BD,Q là trung điểm AC=>ABCD là hình bình hành
Cho hình chữ nhật ABCD(AB>AD), gọi M là trung điểm cạnh AB. Từ M kẻ MN vuông góc với CD tại N( N thuộc CD)
a, Trên tia DM lấy điểm K sao cho M là trung điểm của đoạn thẳng DK. Chứng minh tứ giác ADBK là hình bình hành và tam giác AKC cân.
b,Gọi I là trung điểm của AK. Tia phân giác của góc AIM cắt AM tại E, tia phân giác của góc KIM cắt MK ở F. Chứng minh EF song song với BD.
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD