Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh nguyễn

Cho hình chữ nhật ABCD(AB>AD), gọi M là trung điểm cạnh AB. Từ M kẻ MN vuông góc với CD tại N( N thuộc CD)

a, Trên tia DM lấy điểm K sao cho M là trung điểm của đoạn thẳng DK. Chứng minh tứ giác ADBK là hình bình hành và tam giác AKC cân.

b,Gọi I là trung điểm của AK. Tia phân giác của góc AIM cắt AM tại E, tia phân giác của góc KIM cắt MK ở F. Chứng minh EF song song với BD.

Nguyễn Lê Phước Thịnh
13 tháng 1 2024 lúc 14:00

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD


Các câu hỏi tương tự
Nguyễn đức thành
Xem chi tiết
Trần Công Luận
Xem chi tiết
.....vui ... vẻ....
Xem chi tiết
Anh Đỗ Ngọc
Xem chi tiết
Võ Quang Nhật
Xem chi tiết
Đạt Phạm Quốc
Xem chi tiết
Vang Phan
Xem chi tiết
Trần Đại Nghĩa
Xem chi tiết
Minh Thư.
Xem chi tiết