1/1×2+1/2×3+1/3×4••••+1/99×100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=1-1/100
=99/100
=1−1/2+1/2−1/3+1/3−1/4+...+1/99−1/100
=1 − 1/100 = 99/100
1/1.2+1/2.3+1/3.4+...+1/99.100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Tính :
1/1.2 + 1/2.3 + 1/3.4 + . . . + 1/99.100
Answer:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{100}{100}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)
1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)=?
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)
=1-1/2+1/2-1-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
tôi không chép bài giang ho đai ca đâu nha.
=1-1/2+1/2-1/3+.....+1/99-1/100
=1-1/100
=99/100
tinh 1/1.2+1/2.3+1/3.4+.......+1/99.100
1/1.2+1/2.3+1/3.4+......+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+..........+1/99-1/100
=1-1/100
=99/100
A=1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100
A=1/100-1
A=99/100
A= 1/1.2+1/2.3+1/3.4+...+1/99.100 = ?
A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100
A=1/1-1/100
A=100/100-1/100
A=99/100
Mk ko chép đề bài
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A==\frac{99}{100}\)
kết quả = 99/100 tick mik đúng nhé
1/1.2+1/2.3+1/3.4+ ... +1/98.99+1/99.100
1/1.2 + 1/2.3 + .................+ 1/99.100 =
1/1 - 1/2 + 1/2 - 1/3 +....................+ 1/99 - 1/100 =
1/1 - 1/100 = 99/100
1 phần 1.2 + 1 phần 2.3 + 1phần 3.4+ .....+1 phần 99.100
= 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
= 1 - 99/100
= 1/100.
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}-\dfrac{1}{100}=\dfrac{100}{100}-\dfrac{1}{100}\)
=\(\dfrac{99}{100}\)
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)