Bài 1: Rút gọn
a) (x+3)^2+(x-3)^2+2(x^2-9)
b) (4x-1)^3-(4x-3)(16x^2+3)Bài 1 rút gọn
a) A=3.(x-y)2-2.(x+y)2-(x+y).(x-y)
b) M=2.(2x+5)2-3.(4x+1).(1-4x)
Giúp mik vs mik cảm ơn
a) A= 3.(x2-2xy+y2)- 2. (x2+2xy+y2) - x2-y2
A= 3.x2-2xy+y2-2. x2+2xy+y2-x2-y2
bài 1:rút gọn biểu thức
a)(x+3)^2+(x-3)^2+2(x^2-9)
b)(4x-1)^3-(4x-3)(16x^2+3)
bài 2:phân tích đa thức thành nhân tử
a)16x-8xy+xy^2
b)3(3-x)=2x(x-3)
c)3x^2+4x-4
bài 3:tìm x,biết:
a)(3x-2)(3x+4)-(2-3x)^2=6
b)2(x-3)-(x-3)(3x-2)=0
c)(x-1)(x+2)-x(x-2)=-5
Bài 1 :
a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)
\(=x^2+6x+9+x^2-6x+9+2x^2-18\)
\(=4x^2\)
b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)
Bài 2 :
a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)
b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)
c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)
Rút gọn biểu thức
a) ( x + 3 )2 + ( x - 3 )2 + 2( x2 - 9 )
= x3 + 6x + 9 + x2 - 6x + 9 + 2x2 - 18
= 4x2
b) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 - 48x2 + 12x - 9 )
= 64x3 - 48x2 + 12x - 1 - 64x3 + 48x2 - 12x + 9
= 8
PTĐTTNT
a) 16x - 8xy + xy2
= x( 16 - 8y + y2 )
= x( 4 - y )2
b) 3( 3 - x ) ± 2x( x - 3 ) < không biết thay dấu gì (: >
= 3( 3 - x ) \(\mp\)2x( 3 - x )
= ( 3 - x )( 3 \(\mp\)2x )
c) 3x2 + 4x - 4
= 3x2 + 6x - 2x - 4
= 3x( x + 2 ) - 2( x + 2 )
= ( x + 2 )( 3x - 2 )
Tìm x
a) ( 3x - 2 )( 3x + 4 ) - ( 2 - 3x )2 = 6
<=> ( 3x - 2 )( 3x + 4 ) - ( 3x - 2 )2 = 6
<=> ( 3x - 2 )( 3x + 4 - 3x + 2 ) = 6
<=> ( 3x - 2 ).6 = 6
<=> 3x - 2 = 1
<=> x = 1
b) 2( x - 3 ) - ( x - 3 )( 3x - 2 ) = 0
<=> ( x - 3 )( 2 - 3x + 2 ) = 0
<=> ( x - 3 )( 4 - 3x ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{3}\end{cases}}\)
c) ( x - 1 )( x + 2 ) - x( x - 2 ) = -5
<=> x2 + x - 2 - x2 + 2x = -5
<=> 3x - 2 = -5
<=> 3x = -3
<=> x = -1
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
bài 1: rút gọn bthuc
a.\(\dfrac{a+\sqrt{a}}{\sqrt{a}}\) b.\(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}\)
b2: rút gọn
a.\(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}\) b.4-x-\(\sqrt{4-4x+x^2}\) c.\(\sqrt{4x^2-4x\text{x^2 +2*x-3 >0}}-\sqrt{4x^2+4x+1}\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
Rút gọn
a) \(\dfrac{x^5-2x^4+2x^3-4x^2-3x+6}{x+4}\)
b) \(\dfrac{x^4-4x^2+3}{x^4+6x^2-7}\)
c) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)
\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)
MẤY BÁC AI GIẢI GIÙM MÌNH VỚI THANK TRUOC ROI LIKE SAU . \
TÍNH GIÁ TRỊ BIỂU THỨC : A= X.(X+2).(X-2)-(X-3).(X^2+3X+9) tại x=1 phần 4
B= (4X+1).(1-4X+16X^2)-16X.(4X^2-5) tại x= 1 phần 5
BÀI 2: CHO A+B=1 CMR : A^3+B^3+3AB=1
CÂU B: CHO X+Y=1 CMR : 2.(X^3+Y^3)-3.(X^2+Y^2)=-1
Bài 1 rút gọn
a)\(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)với a
≥0
b)\(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
c)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
giải hộ mik
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
ai giúp mình giả bài toán này với ; tính giá trị biểu thứ : x.(x+2).(x-2)-(x-3).(x^3+3x+9) tại x bằng 1/4
câu b: (4x+1).(1-4x+16x^2)-16x.(4x^2-5)tai x=1/5
baif 2 : cho a+b=1 cmr : a^3+b^3+3ab=1
câu b: cho x+=1 cmr: 2.(x^ 3+y^3)-3.(x^2+y^2)= -1
ai gia giup minh minh se tich cho nguoi do thnks nhieu
mk thực sự cần bn hiểu bài
a) = x(x2 -4) -(x3 - 27) = x3 -4x -x3 +27
= 27-4x thay x = 1/4 có;
= 26
( nếu hiu dc mk lam tip cho)
ai muốn mình tích nhi hãy giúp mình giải với
1. Cho \(a^3+b^3+c^3=3abc\) (a+b+c ≠0)
Tính giá trị biểu thức:
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
2. Rút gọn
a) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)
b) \(\dfrac{x^2+8x+7}{x^3+2x^2+x}\)
Bài 1:
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)
Bài 2:
a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)
b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)