Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thảo Thái Thị
Xem chi tiết
Thanh Thảo Thái Thị
20 tháng 9 2021 lúc 15:52

GIÚP mình thật đầy đủ nhất

Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 23:33

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

Thanh Thảo Thái Thị
22 tháng 9 2021 lúc 17:03

Bài 1?

mình tên gì :)?
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 21:19

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Chau Pham
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 10 2021 lúc 20:13

a) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b) Áp dụng HTL trong tam giác ABH vuông tại H và tam giác AHC vuông tại H:

\(\left\{{}\begin{matrix}AM.AB=AH^2\\AN.AC=AH^2\end{matrix}\right.\)\(\Rightarrowđpcm\)

Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:13

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Nguyễn Tuyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2023 lúc 17:59

loading...  

Nguyễn Viễn
Xem chi tiết
Nguyen Quynh Huong
15 tháng 6 2022 lúc 21:14

undefinedundefinedundefinedundefined

Lê Nữ Han Ni
Xem chi tiết
Lương Đại
27 tháng 3 2022 lúc 21:33

Hình bạn tự vẽ ạ

a, Xét \(\Delta ABC\) và \(\Delta HAC\)  có :

\(\widehat{A}=\widehat{AHC}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)

Ta có : ΔABC vuông A, định lý Pi-ta-go ta đươc :

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Mà \(\Delta ABC\sim\Delta HAC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)

hay \(\dfrac{3}{AH}=\dfrac{5}{4}\)

\(\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b, \(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)

ngọc trung Đinh ngọc tru...
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 10:22

a, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{BH\cdot CH}=\sqrt{5,76}=2,4\left(cm\right)\end{matrix}\right.\)

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Đỗ Thị Thu Huyền
Xem chi tiết