-((a-1)/(a+1) - a/(a-1) - (3a+1)/1-a^2)) : 2a+1/a^2-1
Cho bt A=[(a-1)^2/3a+(a-1)^2-1-2a^2+4a/a^3-1+1/a-1]:2/a^2+1 Rút gọn A
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
tính a, ( 2a+9/9-4a^2) + (-1/2a+3)
b, ( 3a-1/a^2-1) + ( 1/1-a)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
2.b)4√8-√18-6√1/2-√200
3.a)(a√6/a+√2a/3+√6a):√6a (a>0)
b)2/3a-1*√3a^2(9a^2-6a+1) (1/3>a>0)
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
cmr a-{[((16-a)a)/(a^2-4)]+(3+2a)/(2-a)-(2-3a)/(a+2)}:(a-1)/(a^3+4a^2+4a)=2a/1-a
Rút gọn A = \(\left[\frac{\left(a-1\right)^2}{\left(a-1\right)^2+3a}+\frac{2a^2-4a-1}{a^3-1}+\frac{1}{a+1}\right]:\frac{2a}{3}\)
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{a^3-1}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)
Bài 1 tính
a)(2/(x-3))+(2x/(x^2-4x+3))+x/(x-1)
b) a/(x(x+a))+a/((x+a)(x+2a))+a/((x+2a)(x+3a))+1/(x+3a)
giúp với mn ơi
Rút gọn: A= [\(\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\)]:\(\dfrac{2a}{a^3+a}\)
\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)