Cho hình vuông ABCD lấy điểm M ∈ BC vẽ AN ⊥ AM; N ∈ CD; tia AM cắt đường thẳng CD tại E.
a) ΔANM là tam giác gì?
b) Cmr: khi điểm M di động trên cạnh BC thì \(\dfrac{1}{AM^2}+\dfrac{1}{AE^2}\)không đổi
Cho hình chữ nhật ABCD có AB = 16cm, BC = 12cm. Vẽ đường cao AH của tam giác ADB. Trên tia AH lấy điểm M sao cho AM = 4cm, trên tia DH lấy điểm N sao cho DN = 3cm. Chứng minh BM vuông góc AN
\(BD=\sqrt{16^2+12^2}=20\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
MH=9,6-4=5,6cm
DH=12^2/20=144/20=7,2cm
=>HN=7,2-3=4,2cm
=>HN/HD=HM/HA
=>MN//AD
=>MN vuông góc AB
Xét ΔANB có
AH,NM là đường cao
AH cắt NM tại M
=>M là trực tâm
=>BM vuông góc AN
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng: AM = AN
Áp dụng định nghĩa và giả thiết của hình vuông ABCD ta được:
⇒ Δ ABM = Δ ADN( g - c - g )
Do đó AM = AN (cặp cạnh tương ứng bằng nhau)
Cho hình vuông ABCD. Trên các cạnh AB,BC lấy các điểm M,N tương ứng sao cho AM=BN, X là giao điểm AN và CM. a) CMR DM=AN và DM vuông góc với AN. b) CMR DX vuông góc với MN
a: XétΔMAD vuông tại A và ΔNBA vuông tại B có
MA=NB
AD=BA
Do đó: ΔMAD=ΔNBA
=>DM=AN và \(\widehat{AMD}=\widehat{BNA}\)
=>\(\widehat{AMD}+\widehat{MAN}=90^0\)
=>DM vuông góc AN
b: AM+MB=AB
BN+NC=BC
mà AM=BN và AB=BC
nên MB=NC
Xét ΔMBC vuông tại B và ΔNCD vuông tại C có
MB=NC
BC=CD
Do đó: ΔMBC=ΔNCD
=>\(\widehat{BMC}=\widehat{CND}\)
=>\(\widehat{CND}+\widehat{NCM}=90^0\)
=>DN vuông góc MC
Xét ΔDMN có
CM,NA là đường cao
CM cắt NA tại X
Do đó: X là trực tâm
=>DX vuông góc MN
Cho hình vuông ABCD, trên cạnh BC lấy điểm M, AM cắt đường thẳng CD tại điểm N. Kéo dài DM cắt BN tại I. Chứng minh rằng CI vuông góc với AN
cho tam giác ABC cân tại A . trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM = CN . a, CM AM = AN . b, kẻ BH vuông góc với AM [ H thuộc AM ] , kẻ CK vuông góc với AN [ K thuộc AN ] .CM BH = CK . có vẽ hình và làm cả 2 phần a,b nha mọi người
a: XétΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
cho hình vuông ABCD. Trên nữa mặt phẳng chứa điểm B bờ là đường thẳng AD. Vẽ tia AM (M thuộc CD) sao cho góc MAD=20 độ. Cũng trên nữa mặt phẳng này vẽ tia AN (N thuộc BC) sao cho góc NAD=65độ. Từ B kẻ BH vuông với AM(H thuộc AN) và trên tia đối của tia BH lấy P sao cho HP=HB. Chứng minh
a, 3 điểm N,P,M thẳng hàng
b, tính các góc của tam giác AMN
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M, cạnh AD lấy điểm N sao cho AM = AN. Kẻ AH vuông góc vs DM và AH cắt BC tại P. chứng mình 5 điểm C,D,N,H,P cùng thuộc một đường tròn
làm tương tự
Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo AC và BD, M là trung điểm của OB, N là trung điểm của CD.
a, Chứng minh: +góc AMN vuông.
+A, M, N, D cùng thuộc một đường tròn, xác định tâm của nó.
+ AN>MD
b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn
Bài làm
Từ M hạ ME vuông góc AD,MF vuông góc DC (ME//AB, MF//BC) , nối MA và MN ta có DM = 3/4.DB => AE = CF = 1/4 AD ( AD = DC= AB = BC cạnh hình vuông)
ME = MF = 3/4.AB, NC = 1/2.DC và CF = 1/4 DC => NF = 1/4 DC
=> tam giác vuông AEM = tam giác vuông NFM ( hai cặp cạnh góc vuông bằng nhau đôi một)
=>góc AME = góc NMF mà góc NMF + góc EMN = 90 độ => góc AME + góc EMN = 90 độ
=> góc AMN = 90 độ (điều phải cm)
Gọi I là trung điểm AN, do tam giác ADN vuông tại D =>ID= IA = IN (trung tuyến thuộc cạnh huyền bằng 1/2 cạnh huyền) , tương tự có tam giác AMN vuông tại M => IM = IA = IN
=> 4 điểm A, D, N, M cách đều I => A, M, N, D cùng thuộc một đường tròn tâm là trung điểm I của đoạn AN
tam giác vuông cân DEM có DM^2 = 2.ME^2
tam giác vuông cân AMN có AN^2 = 2.MA^2 mà MA > ME
=> AN^2 > DM^2 => AN > DM (điều phải cm)
b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn
góc DPQ = 90 độ (theo cách dựng AP vuông góc DI)
và góc DCQ = 90 độ (gt ABCD là hình vuông) nên D, P, C, Q thuộc đường tròn đường kính DQ.
ta sẽ c/m K thuộc đường tròn đường kính DQ.nghĩa là góc DKQ = 90 độ
xét tứ giác IPQB có góc P và B vuông => góc PQB + góc PIB = 180 độ
mà góc góc PIB + góc PIA = 180 độ =>góc PIA =góc PQB => góc DIA = góc AQB
xét 2 tam giác vuông DAI và ABQ có AD = AB và góc DIA = góc AQB
=> tam giác DAI = tam giác ABQ ( cạnh góc vuông, góc nhọn) => AK = BQ => KQ//AB
=> góc DKQ = 90 độ => K thuộc đường tròn đường kính DQ.
=> 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn ( điều phải c/m)
AH vuông góc DM
=>góc MAH=góc MDA
Xét ΔABP vuông tại B và ΔDAM vuông tại A có
AB=AD
góc MAH=góc MDA
=>ΔABP=ΔDAM
=>BP=AM=AN
mà BC=AD
nên PC=ND
=>PCND là hình chữ nhật
=>P,C,D,N cùng nằm trên đường tròn đường kính DP
mà H nằm trên đường tròn đường kính DP(góc DHP=90 độ)
nên C,D,N,H,P cùng thuộc 1 đường tròn
Cho hình vuông ABCD có góc B = góc D= 90 độ và AB=AD. Trên cạnh BC lấy điểm M và trên cạnh CD lấy điểm N sao cho AM vuông góc BN. Gọi H là giao điểm thẳng AM và BN; gọi K là giao điểm của đoạn thẳng AN và BM. Chứng minh rằng AH.AM=AK.AN
Cho hình vuông ABCD. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AD, vẽ tia AM ( M thuộc CD) sao cho góc MAD =20 độ, Cũng trên nửa mặt phẳng này vẽ tia AN ( N thuộc BC) sao cho góc NAD=65 độ. Từ B kẻ BH vuông góc với AN (H thuộc AN) và trên tia đối của tia HB lấy điểm B sao cho HB=HP.
a/ 3 điểm N, P, M thẳng hàng
b/tính các góc của tam giác AMN