Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thiện Khiêm
Xem chi tiết
Trần Thiện Khiêm
Xem chi tiết
Moon Light
10 tháng 8 2015 lúc 9:13

Ta có:\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)

Do x>y>0 =>x2+xy+y2<x2+2xy+y2

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x^2-y^2}{x^2+2xy+y^2}\)

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x-y}{x+y}\)

Trần Thiện Khiêm
Xem chi tiết
Trần Đức Thắng
10 tháng 8 2015 lúc 9:37

\(\frac{\left(x+y\right)^3}{x^2-y^2}\)

\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)

Vì x > y > 0  => x^3 + y^3 < ( x+  y)^3 

=> \(\frac{x^3+y^3}{x^2+y^2}\frac{x^2-xy+y^2}{x-y}\)

pham thuy trang
Xem chi tiết
Người Yêu Môn Toán
1 tháng 8 2015 lúc 16:31

\(B=\frac{x^2-y^2}{x^2+y^2}=\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^2-2xy}\)(1)

Vì x>y>0, ta có:

\(A=\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)

Vì x>y>0 nên \(\left(x+y\right)^2-2xy

nguyễn thị hồng hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 13:48

Ta có: \(A=\dfrac{x-y}{x+y}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

\(=\dfrac{x^2-y^2}{x^2+2xy+y^2}\)

Ta có: \(x^2+2xy+y^2>x^2+y^2\forall x>y>0\)

\(\Leftrightarrow\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\)

hay A<B

Nguyen Ngoc Linh
Xem chi tiết
Đặng Nguyễn Khánh Uyên
25 tháng 1 2017 lúc 7:44

Có thể thế vào: x=2;y=1.Ta có:

\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)

\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Đặng Nguyễn Khánh Uyên
25 tháng 1 2017 lúc 14:17

cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.

Đặng Nguyễn Khánh Uyên
25 tháng 1 2017 lúc 14:32

Cách này thì thi viết:

 Ta có: \(\frac{x^2-y^2}{x^2+y^2}=\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^2-2xy}\left(1\right)\)

            \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)

\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Trần Việt Hoàng
Xem chi tiết
Phạm Thị Thùy Linh
16 tháng 5 2019 lúc 20:50

\(B=\frac{x^2-y^2}{\left(x^2+y^2\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}\)(1)

Vì x > y > 0 '

\(\Rightarrow A=\frac{\left(x-y\right)}{\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)

Mà x > y > 0 

\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)(3)

Từ (1) , (2) và (3) \(\Rightarrow\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}>\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

Hay \(A< B\)

Võ Trà Duyên
Xem chi tiết
leggo
Xem chi tiết
Đinh Đức Hùng
19 tháng 7 2017 lúc 12:47

Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)

Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)  (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )

Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Vu THi Huyen
19 tháng 7 2017 lúc 13:08

\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)

\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)

\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)