Cho Tam giác ANC vuông tại B (BC
Cho tam giác ABC vuông tại A có AB=AC. Gọi N là trung điểm của cạnh BC. a)Chứng minh tam giác ANB=tam giác ANC b)Chứng minh góc ANB =góc ANC và AN vuông góc với BC c) Kẻ ND vuông góc với AC( D thuộc AC). Tính số đo của góc AND
a: Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC
b: Ta có: ΔABC cân tại A
mà AN là đường trung tuyến
nên AN là đường cao
c: Ta có: ΔANC vuông cân tại N
mà ND là đường cao
nên ND là đường trung tuyến
=>ND=AD
=>ΔAND vuông cân tại D
hay \(\widehat{AND}=45^0\)
Cho tam giác ABC vuông tại A, biết AB=AC, gọi N là trung điểm của BC
a/ Chứng minh hai tam giác ANC = ANB
b/ Chứng minh AN vuông góc BC
c/ Từ C vẽ đường thẳng vuông góc với BC tại B cắt AB tại M
cho tam giác abc đều tia phân giác của góc b cắt ac tại m từ a kẻ đường thẳng vuông góc với bc lần lượt tại n và e
cmr:a>tam giác anc cân
b>nc vuông góc bc
c>tam giác abc cân
Cho tam giác ABC, biết AB=AC, gọi N là trung điểm của BC
a/ Chứng minh hai tam giác ANC = ANB
b/ Chứng minh AN vuông góc BC
c/ Từ C vẽ đường thẳng vuông góc với BC tại B cắt AB tại M
a. Xét tam giác ANC và tam giác ANB ta có
AC=AB
NC=NB
AN chung
Vậy tam giác ANC = tam giác ANB(c.c.c)
b.Ta có : góc ANC=góc ANB( tam giác ANC= tam giác ANB)
Mà ANC+ANB=180( kề bù)
nên ANC=ANB=\(\frac{180}{2}=90\)
vẬY AN vuông góc BC
c.ko có câu hỏi
Cho Tam giác ABC vuông góc tại A. AB=3cm và AC=4cm a) Tính BC b) Trên tia đối của của AB lấy I sao cho AB = AI. Chứng minh tam giác BIC cân c)Vẽ AN thuộc BC. N thuộc BC, AM vuông góc CI, M thuộc CI. Chứng minh tam giác ANC= tam giác AMC d) Chứng minh MN song song với BI
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB
cho tam giác ABC, AB=AC, 2 đường trung tuyến BM và CN cắt nhau tại G
a) CM: tam giác AMB= tam giác ANC
b) AG cắt BC tại H. CM: AH vuông góc với BC
c) Tính AG biết BC=12cm, AC=10cm
a) Xét \(\Delta ABC\)có : \(AB=AC\Rightarrow\Delta ABC\)cân
Có BM và CN là đường trung tuyến của tam giác \(\Rightarrow AM=AN=BN=CN\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có : \(\hept{\begin{cases}AM=AN\left(cmt\right)\\\widehat{mAn}:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta AMB=\Delta ANC\left(c\cdot g\cdot c\right)}\)
b) Vì 2 đường trung tuyến BM và CN cắt nhau tại G => G là trọng tâm của \(\DeltaÂBC\)
=> AG là đường trung tuyến còn lại
mà \(\Delta ABC\)cân => AG vừa là đường trung tuyến và vừa là đường cao
\(\Rightarrow AG\perp BC\)hay \(AH\perp BC\)
Vì AH vừa là đường cao vừa là trung tuyến => \(BH=CH=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)
Áp dụng định lý PYTAGO trong tam giác vuông \(AHC\)( do \(AH\perp BC\)) có :
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2=10^2-6^2=100-36=64\)
\(\Rightarrow AH=8\left(cm\right)\)
Theo tính chất 3 đường trung tuyến => \(\frac{AG}{AH}=\frac{2}{3}\Leftrightarrow\frac{AG}{8}=\frac{2}{3}\Leftrightarrow AG=\frac{8.2}{3}=\frac{16}{3}\left(cm\right)\)
Cho tam giác dều ABC. Tia phân giác của góc B cắt cạnh AC tại M. Từ A kẻ đường thẳng vuông góc với AB cắt tia BM và BC lần lượt tại N và E.
C/m : a) Tam giác ANC cân
b) NC vuông với BC
c) Tam giác AEC là tam giác cân
Cho tam giác ABC vuông tại A. Biết AC = 8cm BC=10cm
a) Tính AB, so sánh các góc của tam giác ABC
b) Trên tia đối tia AB lấy điểm D sao cho AD=AB. Đường thẳng qua A song song BC cắt DC tại N. Chứng minh tam giác ACB = tam giác ACD và tam giác ANC cân
c) Trên đoạn AC lấy điểm G sao cho GA = 1/2 GC. Chứng minh B;G;n thẳng hàng
a: \(AB=\sqrt{BC^2-AC^2}=6\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
Cho tam giác ABC vuông tại A AB = 6 AC = 8 lấy M thuộc AC, AM=AB.Kẻ ME vuông góc với BC tại E.
a) cm: CM.CA=CE.CB
b) tia BA và EM cắt nhau tại N. Đường thẳng BM cắt NC tại F. Cm tam giác AMB dồng dạng với tam giác FMC. cm tam giác ANC vuông cân
c) tính SBFN/SMFC